
SCIAENGINEER

Advanced Concept Training Steel Code Check

All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database or retrieval system or published, in any form or in any way, electronically, mechanically, by print, photo print, microfilm or any other means without prior written permission from the publisher. SCIA is not responsible for any direct or indirect damage because of imperfections in the documentation and/or the software.

© Copyright 2015 SCIA nv. All rights reserved.

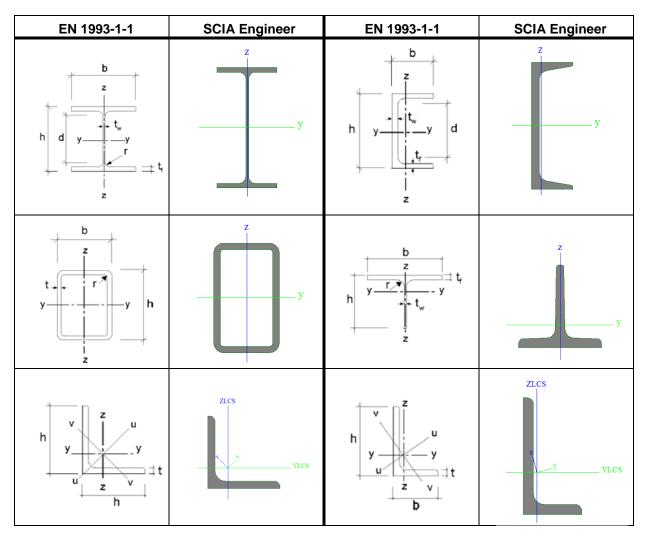
Table of contents

Table of contentsIntroduction	
Cross-sections	2
Materials	
Section classification	
ULS Section Check	
Partial Safety factors	-
Tension	
Compression	
Bending moment Shear	
Torsion	
Combined check: Bending, shear and axial force	
ULS Stability Check	
Classification Flexural buckling check	
Buckling factors	
Buckling length	
Buckling factors/lengths: manual input	
Flexural buckling check in SCIA Engineer	
Torsional Buckling	47
Lateral Torsional Buckling	
General	
Calculation of M _{cr} LTB Restraints	
Diaphragms	
Lateral Torsional Buckling using LTBII – Not in Concept Edition	
Compression and bending check	71
Shear buckling check – EN 1993-1-5	
General	
Stiffners ULS Check for Battened compression members	
ULS Check for Built-in beams	
Optimisation	
Cross section optimisation Overall optimisation	
2 nd order calculation and imperfections	93
Overview	
Alpha critical – Not in concept edition	
Global frame imperfection φ Bow imperfection	
$N_{Ed} > 25\% N_{cr}$	
Bow imperfection e_0	
Buckling shape as imperfection - η_{cr} – Not in concept edition	101
1 st or 2 nd order analysis – Overview paths acc. to EN1993: overview	
Example Overview	
Path 1a 1 st order analysis	
Path 1b 1 st order analysis	
Path 2a 2 nd order analysis – Global imperfection (initial inclination)	116

Path 2c 2 nd order analysis – Global imperfection (initial inclination) + local imperfection (curvature)	118
Path 3 2 nd order analysis – Buckling form replacing both global + local imperfection SLS Check	121
Nodal displacement	124
Relative deformation	124
Fire resistance Check - Not in concept edition128	
General	128
Temperature time curves	128
Steel temperature	129
Steel properties	130
Fire resistance properties in SCIA Engineer	132 133
Principle	134
Example in SCIA Engineer Time domain	134
Principle	141
Example in SCIA Engineer	142
Temperature domain (iterative)	144
Example in SCIA Engineer	
References and literature147	

Introduction

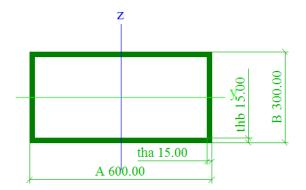
This course will explain the calculation of steel following the EN 1993-1-1: General rules and rules for buildings and EN 1993-1-2: Design of Steel Structures: Structural fire design.


Most of the options in the course can be calculated/checked in SCIA Engineer with the **Concept** edition.

For some supplementary checks an extra module (or edition) is required, but this will always be indicated in those paragraphs.

Cross-sections

SCIA Engineer will use the axes y-y and z-z respectively for the major and minor principal axes of the cross section.


If the principal axes not coincide with the y-y and z-z axes following the EN 1993-1-1, also those axes are indicated:

In the steel code check, the strong axis will always be considered as the y-y axis. So when inputting a profile in which the local y-axis does not corresponds with the strong axis, the axes are switched in the steel code check and SCIA Engineer will give a message about the axes.

Example: Local Axes.esa

The strong axis of this cross section in the local z-axis:

This beam is only loaded by a line load in the z-direction, resulting in a moment My and a shear force Vz on the beam.

When looking at the steel code check, the axes are switched and the strong axis is taken as local y-axis:

The critical check	is on position	0.000
Axis definition : - principal y- axis in - principal z- axis in		
Internal forces	Calculated	Unit
N,Ed	0,00	kN
Vy,Ed	300,00	kN
Vz,Ed	0,00	kN
T,Ed	0,00	kNm
My,Ed	0,00	kNm
Mz,Ed	-300,00	kNm

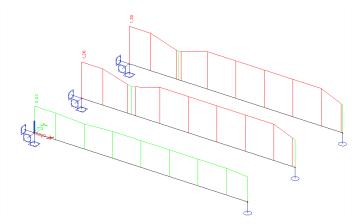
This is indicated in steel code check and also the internal forces are switched following the new local axis.

The following sections are classified during the steel code checks

So as I profile only the indicated profiles are recognized. The other I-forms are not recognized as an I-profile, and e.g. a classification cannot be executed for those forms.

I	Symmetric I shape	
	from library	
	thin walled geometric	I
	sheet welded lw	
RHS	Rectangular Hollow Section	
	from library	
	thin walled geometric	0
CHS	Circular Hollow Section	
	from library	
	thin walled geometric	\bigcirc
L	Angle Section	
	from library	

	T	Г1
	thin walled geometric	
U	Channel Section	
	from library	
	thin walled geometric	C
т	T Section	
	from library	
	thin walled geometric	
	sheet welded Tw	T
PPL	Asymmetric I shape	
	from library	Ĩ
	thin walled geometric	I
	sheet welded lwn	T
z	Z Section	
	from library	
	thin walled geometric	
RS	Rectangular Sections	
	from library	· · · · · · · · · · · · · · · · · · ·
	thin walled geometric	
0	Solid Tube	
	from library	n or the second se
	thin walled geometric	\bigcirc
Σ	Cold formed sections	
	from library	
	pairs 2CFUo	JC


	pairs 2CFUc	
	pairs 2CFCo	JC
	pairs 2CFCc	CJ
	pairs 2CFLT	JL
	General Cross Section: thin walled	
NUM	Numerical section	
	Numerical section	
СОМ	all others	

The standard profile sections (from library) have fixed sections properties and dimensions, which have to be present in the profile library. The section properties and the required dimension properties are described in the Theoretical Background (Ref.[32]).

Example: Cross Section.esa

- 3 cross sections:
 - HEA300 from library
 - HEA300 inputted as a general cross section (Imported from dwg)
 - HEA 300 inputted as a general shape
- Only the first profile is recognized as a symmetric I-shape
- The second and third profile are not recognized as a symmetric I-shape
- The first profile will be classified as an I-profile and a plastic check will be performed.

- The second and third profile cannot be classified, so an elastic check will be performed. This will results in different checks:

Remark:

The general cross section cannot be imported in SCIA Engineer with the concept edition. For this option the Professional or Expert edition is necessary or module esa.07.

Materials

For standard steel grades, the yield strength f_y and tensile strength f_u are defined according to the thickness of the element.

The standard steel grades as defined in Table 3.1 of the EN 1993-1-1 are:

Table 3.1: Nominal values of yield strength f _y and ultimate tensile strength f _u for
hot rolled structural steel

Standard	Nominal thickness of the element t [mm]						
and	t ≤ 40	0 mm	$40 \ mm < t \leq 80 \ mm$				
steel grade	$f_y [N/mm^2]$	$f_u [N/mm^2]$	$f_y [N/mm^2]$	$f_u [N/mm^2]$			
EN 10025-2							
S 235 S 275 S 355 S 450	275 275 430 355 355 510		275 430 255 355 510 335		360 410 470 550		
EN 10025-3	440	550	410	550			
S 275 N/NL S 355 N/NL S 420 N/NL S 460 N/NL	275 355 420 460	390 490 520 540	255 335 390 430	370 470 520 540			
EN 10025-4							
S 275 M/ML S 355 M/ML S 420 M/ML S 460 M/ML	275 355 420 460	370 470 520 540	255 335 390 430	360 450 500 530			
EN 10025-5							
S 235 W S 355 W	235 355	360 510	215 335	340 490			
EN 10025-6							
S 460 Q/QL/QL1	460	570	440	550			

Table 3.1 (continued): Nominal values of yield strength $f_{\rm y}$ and ultimate tensile strength $f_{\rm u}$ for structural hollow sections

Standard	Nominal thickness of the element t [mm]						
and	t ≤ 40) mm	$40 \ mm < t \leq 80 \ mm$				
steel grade	f _y [N/mm ²] f _u [N/mm ²]		$f_y [N/mm^2]$	$f_u [N/mm^2]$			
EN 10210-1							
S 235 H S 275 H S 355 H	235 275 355	360 430 510	215 255 335	340 410 490			
S 275 NH/NLH S 355 NH/NLH S 420 NH/NHL S 460 NH/NLH	275 355 420 460	390 490 540 560	255 335 390 430	370 470 520 550			
EN 10219-1							
S 235 H S 275 H S 355 H	235 275 355	360 430 510					
S 275 NH/NLH S 355 NH/NLH S 460 NH/NLH	275 355 460	370 470 550					
S 275 MH/MLH S 355 MH/MLH S 420 MH/MLH S 460 MH/MLH	275 355 420 460	360 470 500 530					

		🚭 🚔 🚔 🔲 Al	• 7	
S 235	^	Name	S 235	
S 275 S 355		Code independent		
5 355 S 450		Material type	Steel	
S 275 N/NL		Thermal expansion [m/mK]	0,00	
S 355 N/NL		Unit mass [kg/m^3]	7850,0	
5 420 N/NL		E modulus [MPa]	2,1000e+05	
S 460 N/NL S 275 M/ML		Poisson coeff.	0,3	
S 355 M/ML		Independent G modulus		
S 420 M/ML		G modulus [MPa]	8,0769e+04	
S 460 M/ML			0.15	
S 235 W S 355 W		Log. decrement (non-uniform damping only)	0,15	
S 355 W S 460 O/OL/OL1		Colour		
S 235 H		Thermal expansion (for fire resistance) [m/mK]	0,00	
S 275 H		Specific heat [J/gK]	6,0000e-01	
S 355 H		Thermal conductivity [W/mK]	4,5000e+01	
S 275 NH/NLH		Material behaviour for nonlinear analysis		
S 355 NH/NLH S 460 NH/NLH		Material behaviour	Elastic	
S 275 MH/MLH		EC3		
S 355 MH/MLH		Ultimate strength [MPa]	360.0	
S 420 MH/MLH		Yield strength [MPa]	235,0	
S 460 MH/MLH			233,0	
HISTAR 355 HISTAR 355 L		Thickness range		
HISTAR 460				
HISTAR 460 L				
FRITENAR 355	U			

Those materials are included in SCIA Engineer:

The Histar and Fritenar steel grades have been implemented according to Arcelor.

With the option "Thickness range" the influence of the thickness on the yield strength f_y and tensile strength f_u are defined. When inputting a new user defined material in SCIA Engineer, also this thickness range for this material can be inputted:

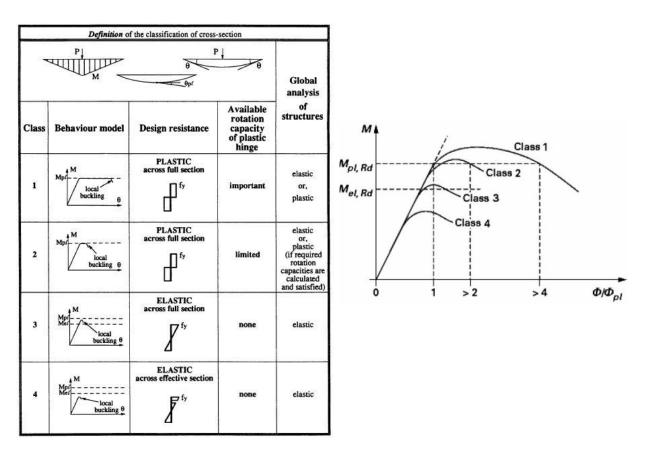
		Materials		×						
a 🕂 🖌 🕷 🖬 🖡	<u>n</u> e	: 🚔 🚔 🕞 Al	• 7							
S 235	^	Name	S 235							
275		Code independent								
355 450		Material type	Steel				Thister on Dee		- 0.005	
275 N/NL		Thermal expansion [m/mK]	0,00				Thickness Ran	ge Strength Reductio	n - 5 235	
355 N/NL		Unit mass [kg/m^3]	7850,0			Lower limit (mm)	Condition	Upper limit [mm]	fy [MPa]	fu (MPa)
420 N/NL 460 N/NL		E modulus [MPa]	2,1000e+05			0	< t <=	40	235,0	360,0
275 M/ML		Poisson coeff.	0,3		2		< t <=	80	215,0	360.0
355 M/ML		Independent G modulus			-	_	< t <=	0	0,0	0,0
420 M/ML 460 M/ML		G modulus [MPa]	8,0769e+04					v	0,0	0,0
35 W		Log. decrement (non-uniform damping only)	0,15							
355 W		Colour								
460 Q/QL/QL1		Thermal expansion (for fire resistance) [m/mK]	0,00							
235 H 275 H		Specific heat [J/gK]	6,0000e-01							
355 H		Thermal conductivity [W/mK]	4,5000e+01							
275 NH/NLH		Material behaviour for nonlinear analysis								
355 NH/NLH 460 NH/NLH		Material behaviour	Elastic	+						
275 MH/MLH		EC3								
355 MH/MLH		Ultimate strength [MPa]	360,0							
420 MH/MLH 460 MH/MLH		Vield strength [MDa]	235.0							
460 MH/MLH ISTAR 355		Thickness range						Tes	t data 🛛 🔍 C	K Cancel
STAR 355 L										
ISTAR 460										
ISTAR 460 L RITENAR 355										
0 120	4									
New Insert Edit	Dele	te		Close						

Example: NA_Material_Strength_Application.esa

In this example a material of the National Annex of Belgium has been inputted manually: S 275 J2. This material has a lot of thickness range strength reductions:

	Lower limit [mm]	Condition	Upper limit [mm]	fy [MPa]	fu [MPa]
	0,00	< t <=	16,00	275,0	430,0
	16,00	< t <=	40,00	265,0	430,0
;	40,00	< t <=	63,00	255,0	430,0
	63,00	< t <=	80,00	245,0	430,0
;	80,00	< t <=	100,00	235,0	430,0
;	100,00	< t <=	150,00	225,0	430,0
7	150,00	< t <=	200,00	215,0	430,0
3	200,00	< t <=	250,00	205,0	430,0
)	250,00	< t <=	400,00	195,0	430,0
•	0,00	< t <=	0,00	0,0	0,0

And for each beam the correct yield strength has been taken into account according to the inputted table above:


<u>CS1</u>		<u>C</u> S	<u>52</u>	<u>C</u> S	<u>83</u>	C	<u>S4</u>
	у	Z	у	00000000000000000000000000000000000000	0.00 00000 H	000022 s 402.00	590.00 00000 U
Formcode	1 - I sections	Formcode	1 - I sections	Formcode	1 - I sections		
h [mm]	80,00	h [mm]	600,00	h [mm]	1000,00	Formcode	1 - I sections
b [mm]	46,00	b [mm]	220,00	b [mm]	500,00	h [mm]	1000,00
t [mm]	5,20	t [mm]	19,00	t [mm]	220,00	b [mm]	500,00
s [mm]	3,80	s [mm]	12,00	s [mm]	50,00	t [mm] s [mm]	220,00 402,00
r [mm]	5,00	r [mm]	24,00	r [mm]	12,00	s [mm] r [mm]	12,00
r1 [mm]	0,00	r1 [mm]	0,00	r1 [mm]	0,00	r1 [mm]	0,00
a [%]	0	a [%]	0	a [%]	0	a [%]	0
W [mm]	0,00	W [mm]	116,00	W [mm]	0.00	W [mm]	0,00
wm [mm^2]	0,00	wm [mm^2]	0,00	wm [mm^2]	0,00	wm [mm^2]	0,00
Material Yield strength fy Ultimate strength f		Material Yield strength fy Ultimate strength fu		Material Yield strength fy Ultimate strength fi		Material Yield strength fy Ultimate strength f	
Fabrication	Rolled	Fabrication	Rolled	Fabrication	Rolled	Fabrication	Rolled

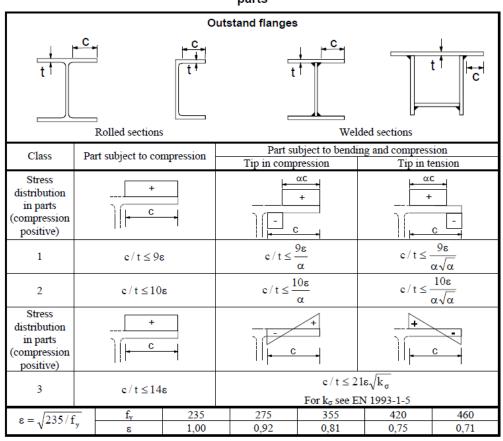
Section classification

The classification is executed following EN 1993-1-1, art. 5.5.

Four classes of cross sections are defined:

- Class 1 (EC3, NEN) or PL-PL (DIN) section Cross sections which can form a plastic hinge with the rotation capacity required for plastic analysis
- Class 2 (EC3, NEN) or EL-PL (DIN) section Cross sections which can develop their plastic moment resistance, but have limited rotation capacity.
- Class 3 (EC3, NEN) or EL-EL (DIN) section Cross sections in which the calculated stress in the extreme compression fibre of the steel member can reach its yield strength, but local buckling is liable to prevent development of the plastic moment resistance.
- Class 4 (EC3, NEN) or Slender section Cross sections in which it is necessary to make explicit allowance for the effects of local buckling when determining their moment resistance or compression resistance.

This classification depends on the proportions of each of its compression elements. For each intermediary section, the classification is determined and the related section check is performed. The classification can change for each intermediary point.


For each load case/combination, the critical section classification over the member is used to perform the stability check. So, the stability section classification can change for each load case/combination. However, for non-prismatic sections, the stability section classification is determined for each intermediary section.

The classification check in SCIA Engineer will be executed following tables 5.2 of the EN 1993-1-1:

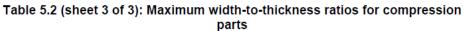

		puito					
	Internal compression parts						
		c t++	C Axis of bending				
			Axis of bending				
Class	Part subject to bending	Part subject to compression	Part subject to bending and compression				
Stress distribution in parts (compression positive)		f _y f _y					
1	$c/t \le 72\epsilon$	$c/t \le 33\epsilon$	when $\alpha > 0.5$: $c/t \le \frac{396\epsilon}{13\alpha - 1}$ when $\alpha \le 0.5$: $c/t \le \frac{36\epsilon}{\alpha}$				
2	$c/t \le 83\epsilon$	c / t ≤ 38ε	when $\alpha > 0.5$: $c/t \le \frac{456\epsilon}{13\alpha - 1}$ when $\alpha \le 0.5$: $c/t \le \frac{41.5\epsilon}{\alpha}$				
Stress distribution in parts (compression positive)		f, +	t t t t t t t t t t t t t t t t t t t				
3	c / t ≤124ε	$c / t \leq 42 \epsilon$	when $\psi > -1$: $c/t \le \frac{42\varepsilon}{0,67+0,33\psi}$ when $\psi \le -1^{*}$: $c/t \le 62\varepsilon(1-\psi)\sqrt{(-\psi)}$				
$\varepsilon = \sqrt{235/f}$	f _y	235 275	355 420 460				
	δ	1,00 0,92	0,81 0,75 0,71 or the tensile strain $\varepsilon > f/F$				

Table 5.2 (sheet 1 of 3): Maximum width-to-thickness ratios for compression parts

*) ψ \leq -1 applies where either the compression stress σ \leq f_y or the tensile strain ϵ_y > f_y/E

Table 5.2 (sheet 2 of 3): Maximum width-to-thickness ratios for compression parts

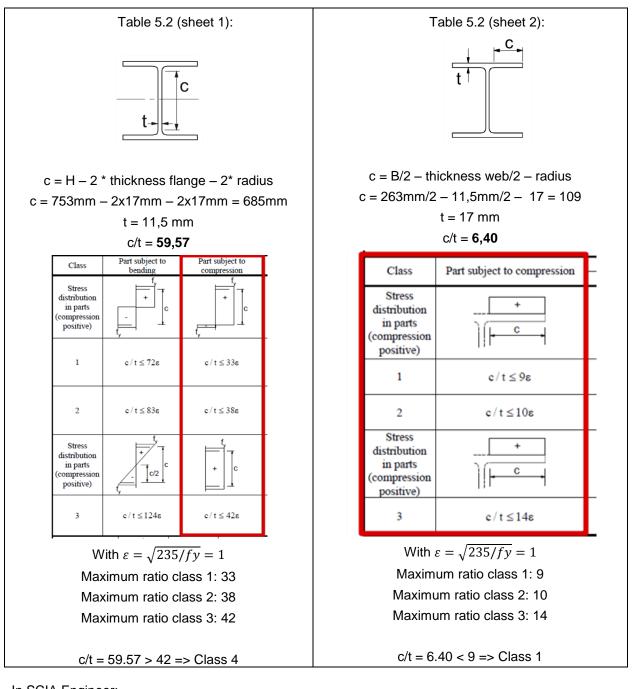
If this classification results in a class 4 profile, the effective cross section will be calculated according to EN 1993-1-5.

For each load case and combination, the most critical effective area properties are saved:

- A_{eff} is the effective area of the cross section when subject to uniform compression.
- W_{eff} is the effective section modulus of the cross-section when subject only to moment about the relevant axis.
- e_N is the shift of the relevant centroidal axis when the cross section is subject to uniform compression.

With these critical properties, the steel code check is performed.

Example: Industrial Hall.esa


In this example the classification will be done for an IPE750x137 profile, resulting in a class 4 cross section. And afterwards the calculation of the effective shape following EN 1993-1-5 will be given.

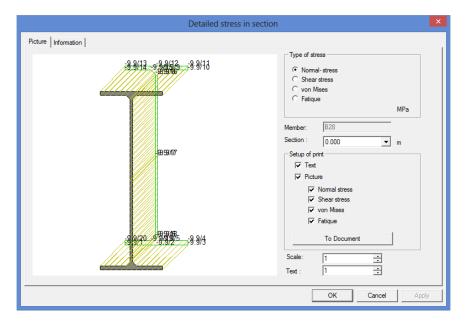
Consider column B28

	Cross-S	Sections	×
🦊 🤮 🍠 👪 💺 🚱 🗠 🕰	🎒 🚅 🔒 Al	• 7	
Mid column - IPE750x137	Geometry		^
Beam - IPE160 Purlin - U240	Formcode	1 - I sections	
Gable column - HEB340	h [mm]	753,00	
🕀 Diagonal - RD15	b [mm]	263,00	
⊕ Beam2 - IPE750x137	t [mm]	17,00	
	s [mm]	11,50	
	r [mm]	17,00	
	r1 [mm]	0,00	
	a [%]	0	
	W [mm]	102,00	
	wm [mm^2]	0,00	
			×
		у	
New Insert Edit Delete	-	Setup	Update all Close

The classification has been executed at the bottom of the column (position = 0.00m)

On this position a hinged support has been inputted, so on this position the column is not subjected to bending.

In SCIA Engineer:


Classification for member buckli Decisive position for stability classific Classification of Internal Compre According to EN 1993-1-1 Table 5.2	cation: 0,0 ession pa)00 m
Maximum width-to-thickness ratio	59,57	
Class 1 Limit	33,00	
Class 2 Limit	38,00	
Class 3 Limit	42,00	
=> Internal Compression parts Class Classification of Outstand Hange According to EN 1993-1-1 Table 5.2	s	
Maximum width-to-thickness ratio	6,40	
Class 1 Limit	9,00	
Class 2 Limit	10,00	
Class 3 Limit	14,00	
=> Outstand Flange Class 1 => Section classified as Class 4 for n	member b	uckling design

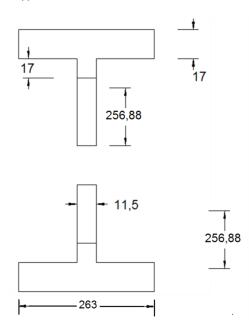
This cross section has a classification class 4 for the stability classification, so effective properties have to be calculated.

Those properties are also given in SCIA Engineer in the preview of the steel code check, just below the classification calculation.

Properties					
sectional area A eff	1.5269e+04	mm²			
Shear area Vy eff	8.9420e+03	mm²	Vz eff	6.3269e+03	mm²
radius of gyration iy eff	320.39	mm	iz eff	58.15	mm
moment of inertia Iy eff	1.5674e+09	mm⁴	Iz eff	5.1634e+07	mm⁴
elastic section modulus Wy eff	4.1630e+06	mm³	Wz eff	3.9265e+05	mm³
Eccentricity eny	0.00	mm	enz	0.00	mm

The calculation of the sectional area A_{eff} is given in below. In this section there is a uniform compression force over the web:

The calculation of the effective section will be performed following EN 1993-1-5:2006, Tabel 4.1 and EN 1993-1-5:2006/AC:2009 article 9). In Table 4.1 the uniform compression situation will be used in this example:


Stress distribution (compression positive)	Effective ^p width b _{eff}
σ_1 σ_2	$\underline{\psi = 1}$:
b_{e1} \overline{b} b_{e2}	$b_{\rm eff} = \rho \ \overline{b}$
	$b_{\rm e1} = 0.5 \ b_{\rm eff}$ $b_{\rm e2} = 0.5 \ b_{\rm eff}$
$\sigma_1 \qquad \qquad \sigma_2 \\ \downarrow \qquad \qquad$	$\frac{1 > \psi \ge 0}{b_{\text{eff}} = \rho \ b}$ $b_{e1} = \frac{2}{5 - \psi} b_{eff} \qquad b_{e2} = b_{\text{eff}} - b_{e1}$
<u>x b</u> x b x	$\underline{\psi < 0}:$
σ_1	$b_{\rm eff} = \rho \ b_c = \rho \ \overline{b'} (1-\psi)$
	$b_{\rm e1} = 0.4 \ b_{\rm eff}$ $b_{\rm e2} = 0.6 \ b_{\rm eff}$
$\psi = \sigma_2 / \sigma_1 \qquad 1 \qquad 1 > \psi > 0 \qquad 0$	$0 > \psi > -1$ -1 $-1 > \psi > -3$
Buckling factor k_{σ} 4,0 8,2 / (1,05 + ψ) 7,81	$\begin{array}{ c c c c c c c c }\hline 7,81 - 6,29\psi + 9,78\psi^2 & 23,9 & 5,98 & (1 - \psi)^2 \\\hline \end{array}$

$$\begin{split} \overline{\lambda_p} &\leq 0.5 + \sqrt{0.085 - 0.055\psi} = 0,673 \qquad \rho = 1\\ \overline{\lambda_p} &> 0.5 + \sqrt{0.085 - 0.055\psi} = 0,673 \qquad \rho = (\overline{\lambda_p} - 0.22)/\overline{\lambda_p}^2\\ \overline{\lambda_p} &= [f_y/\sigma_{cr}]^{0.5} = \frac{\overline{b}/t}{28.4\varepsilon\sqrt{k_{\sigma}}}\\ \varepsilon &= 1,00 \text{ (S235)}\\ k_{\sigma} &= 4,0 \text{ (Tabel 4.1 of EN 1993-1-5:2006)}\\ \overline{\lambda_p} &= \frac{\overline{b}/t}{28.4\varepsilon\sqrt{k_{\sigma}}} = \frac{59.57}{28.4\cdot1.00\cdot\sqrt{4.0}} = 1.05 \end{split}$$

 $\rho = \frac{1.05 - 0.22}{(1.05)^2} = 0.75$

 $b_{e1} = b_{e2} = \ 0.5 \cdot b_{eff} = 0.5 \cdot \rho \cdot \bar{b} = 0.5 \cdot 0.75 \cdot 685 \ mm \ = \ 256,88 \ mm$

 $A_{eff} = [263 \cdot 17 + 256,88 \cdot 11,5 + 17 \cdot 11,5] \cdot 2 = 15152 \text{ mm}^2$

In this calculation the roundings at the corners between the flanges and the web are not taken into account. Therefore the result in SCIA Engineer will be a bit higher:

Properties		-			
sectional area A eff	1.5269e+04	nm²			
Shear area Vy eff	8.94200+03	mm²	Vz eff	6.3269e+03	mm²
radius of gyration iy eff	320.39	mm	iz eff	58.15	mm
moment of inertia Iy eff	1.5674e+09	mm⁴	Iz eff	5.1634e+07	mm⁴
elastic section modulus Wy eff	4.1630e+06	mm³	Wz eff	3.9265e+05	mm³
Eccentricity eny	0.00	mm	enz	0.00	mm

Also the other properties of this effective cross section can be calculated.

Steel member data		×
Section classification Elastic check only Section check only LTB Buckling Curves 6.3.2 Field Position From begin (x) From end (x')	By program No No acc. to Steel>Beams>Setup Rela 0 0 0	* * *
	OK Car	ncel

The calculated classification in SCIA Engineer can be overruled by 2 settings in the **Steel member data**:

Section classification

The user can choose between a classification calculation **By program**, or can overwrite this and choose for class 1, 2 or 3. Since classification 4 is not described for all cross section in the Eurocode, this option can't be chosen.

Elastic Check Only

The user can choose to perform an elastic check. This corresponds with a class 3 check.

Classification in SCIA Engineer

Section	Classification	Class 1	Class2	Class3	Class 4	Warping check Class 1 & 2	Warping check Class 3
I	x	х	х	х	х	х	х
RHS	x	х	x	х	х		
CHS	x	х	x	х			
L	x			x	х		
U	x			х	х		х
Т	x			x			
PPL	x			x	х		х
RS	x			x			
Z	=3			x			
0	=3			х			
Σ	x			x	х		x
NUM	=3			x			
СОМ	=3			х			

Following classes are possible per profile type in SCIA Engineer:

And in the chapter "Cross sections" an explanation is given which sections are recognized under which form type (I, RHS, L, CHS, ...).

ULS Section Check

In this chapter, first the Partial safety factors are explained and afterwards a short explanation of all the section checks is given.

The section check can be found in SCIA Engineer under "Steel -> Beams -> ULS check -> Check". In this menu the user can choose to look at the "Brief" output and or the "Detailed output".

With the brief output the results are shown in one line.

With the detailed output, the results of all the unity checks are shown including a reference to the used formula in the EN 1993-1-1 for each check.

In below the Section Check will be explained and the detailed results are shown.

Partial Safety factors

The partial safety factors are taken from EN 1993-1-1 art. 6.1.

And the following safety factors are taken into account:

γ _{M0} = 1,00	Resistance of cross-section
$\gamma_{M1} = 1,00$	Resistance of members to instability accessed by member checks
γ _{M2} = 1,25	Resistance of cross-section in tension to fracture

Those factors can also be found in the National Annex of EN 1993-1-1 in SCIA Engineer:

	Steel setup	×
Standard EN Steel Member check Fire resistance Cold Formed Plated structural elements	Name Steel Member check Bow Imperfections Member Imperfection Partial Safety Factors Gamma M0 Value [-] Gamma M1 Value [-] Gamma M2	Standard EN EN 1993-1-1 EN 1993-1-1: 5.3.2(3) b) EN 1993-1-1: 5.3.4(3) EN 1993-1-1: 6.1(1) 1,00
	Value [-] • LTB Curves - General Case • LTB Curves - Rolled/Equivalent welded • Interaction Method • Fire resistance • Cold Formed • Plated structural elements	1,25 EN 1993-1-1: 6.3.2.3(1) EN 1993-1-1: 6.3.3(5) EN 1993-1-2 EN 1993-1-3 EN 1993-1-5

Tension

The tension check will be executed following EN 1993-1-1 art. 6.2.3.

$$\frac{N_{Ed}}{N_{t.Rd}} \le 1$$

 $N_{t,Rd} = \frac{A \cdot f_y}{\gamma_{M0}}$: the design plastic resistance of the cross-section

Example: Industrial Hall.esa

Consider bracing B234 (for load case 3DWind1). In this load case the bracing in under tension:

 $N_{t,Rd} = \frac{1,7663 \cdot 10^2 mm^2 \cdot 235 MPa}{1.0} = 41,51 kN$

Unity Check =
$$\frac{29,77kN}{41,51kN} = 0,72$$

Internal forces	Calculated	Unit
N,Ed	29,77	kN
Vy,Ed	0,00	kN
Vz,Ed	0,00	kN
T,Ed	0,00	kNm
My,Ed	0,00	kNm
Mz,Ed	0,00	kNm

Tension check

According to EN 1993-1-1 article 6.2.3 and formula (6.5)

A	1,7663e+02	mm²
Npl,Rd	41,51	kN
Nu,Rd	45,78	kN
Nt,Rd	41,51	kN
Unity check	0,72	-

Compression

The compression check will be executed following EN 1993-1-1 art. 6.2.4.

 $\frac{N_{Ed}}{N_{c,Rd}} \leq 1$

Where

-
$$N_{c,Rd} = \frac{A \cdot f_y}{\gamma_{M_0}}$$
 For class 1, 2 or 3 cross-sections

 $N_{c,Rd} = \frac{A_{eff} \cdot f_y}{\gamma_{M0}}$ For class 4 cross-sections -

Example: Industrial Hall.esa

Consider colu	mn B28	3 (for c	ombinatio	n CO1-L	ILS).
The critical	check	is on	position	1.150	m

Internal forces	Calculated	Unit
N,Ed	-159,86	kN
Vy,Ed	-0,04	kN
Vz,Ed	-101,11	kN
T,Ed	0,00	kNm
My,Ed	-116,27	kNm
Mz,Ed	-0,04	kNm

The classification on this position is Class 1 (column under compression and bending).

$$N_{c,Rd} = \frac{1,7500 \cdot 10^4 mm^2 \cdot 235MPa}{1.0} = 4112,5 \ kN$$

$$Unity \ Check = \frac{159.86kN}{4112.5kN} = 0,04$$

Compression check According to EN 1993-1-1 article 6.2.4 and formula (6.9)

Α	1,7500e+04	mm²
Nc,Rd	4112,50	kN
Unity check	0,04	-

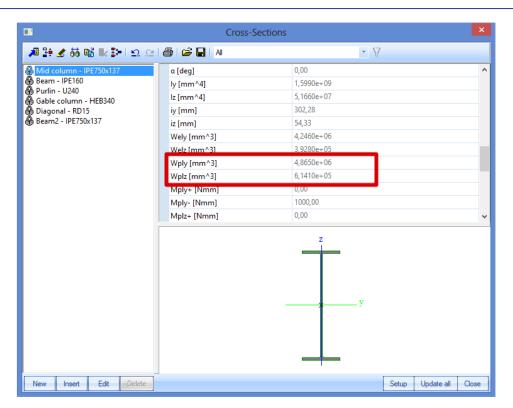
Bending moment

The bending moment check for My and Mz will be executed following EN 1993-1-1 art. 6.2.5.

$$\frac{M_{Ed}}{M_{c,Rd}} \leq 1$$

Where

-	$M_{c,Rd} = M_{pl,Rd} = \frac{W_{pl} \cdot f_{y}}{\gamma_{M0}}$	For class 1 or 2 cross-sections
-	$M_{c,Rd} = M_{el,Rd} = \frac{W_{el,min} \cdot f_y}{\gamma_{M0}}$	For class 3 cross-sections
-	$M_{c,Rd} = rac{W_{eff} \cdot f_y}{\gamma_{M0}}$ For class 4 cro	ss-sections


Example: Industrial Hall.esa

Consider column B28 (for combination CO1-ULS).

•			
Internal forces	Calculated	Unit	
N,Ed	-159,86	kN	
Vy,Ed	-0,04	kN	
Vz,Ed	-101,11	kN	
T,Ed	0,00	kNm	
My,Ed	-116,27	kNm	
Mz,Ed	-0,04	kNm	

The critical check is on position 1.150 m

The classification on this position is Class 1 (column under compression and bending).

$$M_{y,c,Rd} = \frac{W_{pl,y} \cdot f_y}{\gamma_{M0}} = \frac{4.865 \cdot 10^6 mm^3 \cdot 235 MPa}{1.0} = 1,14328 \cdot 10^9 Nmm = 1143,28 kNm$$

$$M_{z,c,Rd} = \frac{W_{pl,z} \cdot f_y}{\gamma_{M0}} = \frac{6.141 \cdot 10^5 mm^3 \cdot 235 MPa}{1.0} = 1,4431 \cdot 10^8 Nmm = 144,31 kNm$$

Unity Check $My = \frac{116.27 \ kNm}{1143,28 \ kNm} = 0,10$

Unity Check
$$Mz = \frac{0.04 \text{ kNm}}{144,31 \text{ kNm}} = 0,00$$

Bending moment check for My

According to EN 1993-1-1 article 6.2.5 and formula (6.12),(6.13)

Wpl,y	4,8650e+06	mm³
Mpl,y,Rd	1143,28	kNm
Unity check	0,10	-

Bending moment check for Mz

According to EN 1993-1-1 article 6.2.5 and formula (6.12),(6.13)

Wpl,z	6,1410e+05	mm³
Mpl,z,Rd	144,31	kNm
Unity check	0,00	-

Shear

The shear check for Vy and Vz will be executed following EN 1993-1-1 art. 6.2.6.

$$\frac{V_{Ed}}{V_{c,Rd}} \le 1$$

For **plastic design** V_{c,Rd} the absence of torsion, is the design plastic shear resistance V_{pl,Rd}: $V = -\frac{A_v \cdot (f_y/\sqrt{3})}{4 \cdot (f_y/\sqrt{3})}$

$$V_{pl,Rd} = \frac{A_{v} \cdot (f_{y}/\sqrt{3})}{\gamma_{M0}}$$

With: A_v: the shear area. The formula for A_v depends on the cross-section (see EN 1993-1-1 article 6.2.6(3)).

For **elastic design** $V_{c,Rd}$ is the design elastic shear resistance. The following criterion for a critical point of the cross-section may be used unless the buckling verification in section 5 of EN 1993-1-5 applies:

$$\frac{\tau_{\scriptscriptstyle Ed}}{f_y \cdot \left(\sqrt{3} \cdot \gamma_{M0}\right)} \le 1$$

Where $\tau_{Ed} = \frac{V_{Ed} \cdot S}{I t}$

Where the shear force is combined with a torsional moment, the plastic resistance $V_{pl,Rd}$ should be reduced as specified in the next paragraph.

Example: Industrial Hall.esa

Consider column B28 (for combination CO1-ULS). The critical check is on position 1.150 m

Internal forces	Calculated	Unit
N,Ed	-159,86	kN
Vy,Ed	-0,04	kN
Vz,Ed	-101,11	kN
T,Ed	0,00	kNm
My,Ed	-116,27	kNm
Mz,Ed	-0,04	kNm

The classification on this position is Class 1 (column under compression and bending).

Shear check for Vy

According to EN 1993-1-1 article 6.2.6 and formula (6.17)

Eta	1,20	
Av	9,2698e+03	mm ²
Vpl,y,Rd	1257,69	kN
Unity check	0,00	-

Shear check for Vz According to EN 1993-1-1 article 6.2.6 and formula (6.17)

Eta	1,20	
Av	9,9222e+03	mm ²
Vpl,z,Rd	1346,22	kN
Unity check	0,08	-

Torsion

EN 1993-1-1 article 6.2.7.

$$\frac{T_{Ed}}{T_{Rd}} \le 1$$

Where T_{Rd} is the design torsional resistance of the cross-section.

 T_{Ed} should be considered as the sum of two internal effects: $T_{Ed} = T_{t,Ed} + T_{w,Ed}$

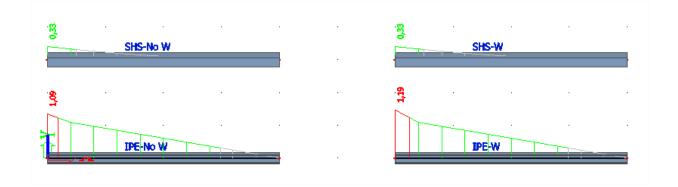
 $\begin{array}{lll} \mbox{Where} & T_{t,Ed} & \mbox{is the internal St. Venant torsion} \\ T_{w,Ed} & \mbox{is the internal warping torsion} \end{array}$

SCIA Engineer will take into account the St. Venant torsion automatically. If the user would like to calculate also with **warping torsion**, this option should be activated in the "Buckling and relative lengths" of this beam:

Bu	uckling and relative lengths.			×
Base settings Buckling data				
	Name BC1 Buckling systems relation	Number of parts	1	
		ky factor	Calculate	-
	yz = zz 💌	kz factor	Calculate	-
	lt = zz 💌	Sway yy	acc. to Steel>Beams>Setup	•
$L_y Dz Dy L_z L_z$		Sway zz	acc. to Steel>Beams>Setup	•
		Point of load application	In shear center	•
		Mcr	Calculated	•
		Bow imperfection eo dy no bow	imperfection	-
*		eo dz no bow	imperfection	•
	Relative deformation systems relation	,		
	def z = yy	def y =	ZZ 💌	
	L			
	I Warping check Begin	Fixed	End Free	⊸
☐ X diagonals	Buckling system Standa	ard method		-
			OK Cancel	Apply

The check box **Warping check** should be activated and for the beginning and end of the beam, the user should indicate if this end is Fixed or Free for warping.

Example: Warping.esa


As quoted in the EN 1993-1-1, art. 6.2.7(7), for closed hollow sections the effects of torsional warping can be neglected and in the case of a member with an open cross section, such as I of H, it may be assumed that the effects of St.Venant torsion can be neglected.

In this example 4 beams are inputted:

- IPE 180 No Warping has been activated
- SHS 180/180/10.0 No Warping has been activated
- IPE 180 Warping has been activated in the buckling data
- SHS 180/180/10.0 Warping has been activated in the buckling data

On all beams, a line force of -4kN is inputted with an eccentricity ey of 0,050 m. The k factor has been changed into 2 in the buckling data.

	Buckling and relative lengths.								×					
Ba	ase set	ttings Bucklin	ng data											
[уу	ky	Sway yy	eo dy [mm]	ZZ	kz	Sway zz	eo dz [mm]	kyz	klt	k	kw	
	1	V Fixed		acc. to B 💌		✓ Fixed		acc. to B 💌		1,00	1,00	2,00	1,00	
	2	Free Free				Free								
		-												

For the **SHS profiles**, there is no difference between the option "Warping" activated or not. This was expected as warping can be neglected for closed hollow section.

For **IPE profiles**, the warping torsion cannot be neglected. So when this is activated, it has a big influence on the resistance value for torsion:

Torsion check IPE 180 without warping activated:

Torsion check

According to EN 1993-1-1 article 6.2.7 and formula (6.23)

Tau,t,Ed	133,6	MPa
Tau,Rd	135,7	MPa
Unity check	0,98	-

Combined Shear and Torsion check for Vz and Tau,t,Rd

According to EN 1993-1-1 article 6.2.6 & 6.2.7 and formula (6.25),(6.26)

Vpl,T,z,Rd	70,02	kN
Unity check	0,23	-

Torsion check IPE 180 with warping activated:

Torsion check

According to EN 1993-1-1 article 6.2.7 and formula (6.23)

Tau,t,Ed	133,6	MPa
Tau,Rd	135,7	MPa
Unity check	0,98	-

Combined Shear and Torsion check for Vz and Tau,t,Rd

According to EN 1993-1-1 article 6.2.6 & 6.2.7 and formula (6.25),(6.26)

Vpl,T,z,Rd	70,02	kN
Unity check	0,23	-

Combined bending, axial force and shear force check

According to EN 1993-1-1 article 6.2.7 According to I. Vayas, Stahlbau 69 (2000) "Interaktion der plastischen Grenzschnittgroessen doppelsymmetrischer I-Querschnitte", Table 1.

Warping conditions at the extremities of the buckling system

Extremity	Condition
Begin	Fixed
End	Free

Decomposition of torsional moment

x [m]	Mxp,Ed [kNm]	Mxs,Ed [kNm]	Mw,Ed [kNm²]
0,000	0,00	0,80	-0,43
0,400	0,29	0,43	-0,19
0,800	0,41	0,23	-0,06
1,200	0,44	0,12	0,00
1,600	0,42	0,06	0,04
2,000	0,37	0,03	0,06
2,000	0,37	0,03	0,06
2,400	0,31	0,01	0,06
2,800	0,25	-0,01	0,06
3,200	0,19	-0,03	0,05
3,600	0,14	-0,06	0,04
4,000	0,12	-0,12	0,00

Internal forces

St. Venant torsion	Mxp,Ed	0,00	kNm
Warping torsion	Mxs,Ed	0,80	kNm
Bimoment	Mw,Ed	-0,43	kNm ²

Force ratios

Cross-section flange quotient	alpha,f	0,61
Cross-section web quotient	alpha,w	0,39
Normal force ratio	n	0,00
Moment ratio for My	my	-0,82
Moment ratio for Mz	mz	0,00
Shear ratio for Vy	vy	0,00
Shear ratio for Vz	vz	0,12
Moment ratio for Mw	mw	0,61
Moment ratio for Mxp	mxp	0,00
Moment ratio for Mxs	mxs	0,05

Influence factors

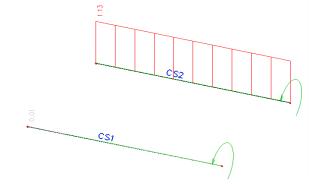
Interaction ratio for shear stresses in flanges	beta,y	0,05
Reduction factor for shear stresses in flanges	pf	0,00
Yield strength reduction for shear stresses in flanges	sf	1,00
Interaction ratio for shear stresses in web	beta,z	0,12
Reduction factor for shear stresses in web	pw	0,00
Yield strength reduction for shear stresses in web	SW	1,00
Additional moment coefficient	lambda,s	0,00
Additional moment coefficient	delta	0,00

Unity checks

Unity check (42) 1,19 -

In this case the difference between the option "warping" activated or not, give a difference in the unity check.

The **torsional properties of the cross sections** are not calculated correctly in a lot of cases. The next example give an explanation about this calculation.


Example: Torsion.esa

In this example two beams are inputted, with the same properties, only the torsional properties of the cross sections are different:

ross sections a	re different:				
CS1		(CS2		
The option "2D F	EM analysis" is not a	ctivated:	The option "2D F	EM analysis" is activated:	
Fibres and Parts	•		□ Fibres and Parts		
Fibre text zoom	1.0		Fibre text zoom	1.0	
Edit named items			Edit named items		
Discrete Content of Co			2D FEM analysis		
Use 2D FEM analysis			Use 2D FEM analysis		
			Mesh size [mm]	0	
			Min. point distance [r	nm] 0	
			Shear area Ay	With τ xz	
			Shear area Az	With $ au$ xy	
	It, but not a correct vanot be calculated and n ⁶ .	alue. The	FEM analysis:	● [N·mm] 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.06 0.06 0.06 0.06 0.00 0.01 0.01	
Property A [mm^2] Ay [mm^2]	7,5000e+03 7,5000e+03		Property A [mm^2]	7,5000e+03	
Az [mm^2]	7,5000e+03		Ay [mm^2]	3,7071e+03	
AL [m^2/m]	7,0000e-01		Az [mm^2]	4,4171e+03	
AD [m^2/m]	7,0000e-01		AL [m^2/m]	7,0000e-01	
cYUCS [mm]	13		AD [m^2/m]	7,0000e-01	
cZUCS [mm]	130		cYUCS [mm]	130	
α [deg]	0,00		cZUCS [mm]		
ly [mm^4]	3,0250e+07		α [deg]	0,00 2,0250a+07	
lz [mm^4]	5,8594e+06		ly [mm^4]	3,0250e+07	
iy [mm]	64		Iz [mm^4]	5,8594e+06 64	
iz [mm]	28		iy [mm]		
Wely [mm^3]	2,3269e+05		iz [mm]	28	
Welz [mm^3]	7,8125e+04		Wely [mm^3]	2,3269e+05	
Wply [mm^3]	4,1250e+05		Welz [mm^3]	7,8125e+04	
Wplz [mm^3]	1,4063e+05		Wply [mm^3]	4,1250e+05	
Mply+ [Nmm]	0,00		Wplz [mm^3]	1,4063e+05	
Mply- [Nmm]	0,00		Mply+ [Nmm]	96937500,00	
Mplz+ [Nmm]	0,00		Mply- [Nmm]	96937500,00	
Mplz- [Nmm]	0,00		Mplz+ [Nmm]	33046875,00	
dy [mm]	0		Mplz- [Nmm]	33046875,00	
dz [mm]	0		dy [mm]	0	
	2,5672e+06		dz [mm]	54	
lt [mm^4]	2,00120+00		lt [mm^4]	1,3076e+06	
lt [mm^4] lw [mm^6]	0,0000e+00				
			lw [mm^6]	2,8054e+09	
lw [mm^6]	0,0000e+00				

On the two beams a torsional moment (8 kNm) has been inputted and a small line load (-0.1 kN/m).

This result in the following Section Check:

The difference in the results is in the torsion check. For the first beam no torsion check can be executed, since no results for torsional stiffnesses can be found.

For beam B2 (CS2) the torsion check can be executed:

The critical check is on position 0.000 m

Internal forces	Calculated	Unit
N,Ed	0,00	kN
Vy,Ed	0,00	kN
Vz,Ed	0,40	kN
T,Ed	-8,00	kNm
My,Ed	-0,80	kNm
Mz,Ed	0,00	kNm

Torsion check

According to EN 1993-1-1 article 6.2.7 and formula (6.23)

Tau,t,Ed	153,0	MPa
Tau,Rd	135,7	MPa
Unity check	1,13	-

Combined check: Bending, shear and axial force

This check will be executed following EN 1993-1-1 articles 6.2.8 - 6.2.9 - 6.2.10.

For bi-axial bending the following criterion may be used:

$$\left[\frac{M_{y,Ed}}{M_{N,y,Rd}}\right]^{\alpha} + \left[\frac{M_{z,Ed}}{M_{N,z,Rd}}\right]^{\beta} \le 1$$

in which α and β are defined as follows:

- I and H sections:

 $\alpha = 2; \beta = 5n$ but $\beta \ge 1$

- Circular hollow sections:

$$\alpha = 2; \beta = 2$$

- Rectangular hollow sections:

$$\alpha = \beta = \frac{1.66}{1 - 1.13n^2} \quad \text{but } \alpha = \beta \le 6$$

Where $n = \frac{N_{Ed}}{N_{pl,Rd}}$

The values $M_{N,y,Rd}$ and $M_{N,z,Rd}$ depends on the moment resistance, reduced with a factor depending on "*n*", the check of the normal force:

$$M_{N,y,Rd} = M_{pl,y,Rd}(1-n)/(1-0.5a_w)$$

$$M_{N,z,Rd} = M_{pl,z,Rd}(1-n)/(1-0.5a_f)$$

And $M_{pl,Rd}$ depends on the yield strength f_{y} .

If $V_{Ed} \ge 0, 5 V_{pl,T,Rd}$

The yield strength will be reduced with a factor ρ .

$$(1-\rho)f_{\gamma}$$

Where

$$\rho = \left(\frac{2 V_{Ed}}{V_{pl,Rd}} - 1\right)^2$$

And

$$V_{pl,Rd} = \frac{A_{v} \cdot (f_{y}/\sqrt{3})}{\gamma_{M0}}$$

When torsion is present ρ should be obtained from

$$\rho = \left(\frac{2 V_{Ed}}{V_{pl,T,Rd}} - 1\right)^2$$

Class 3 cross-sections

EN 1993-1-1 article 6.2.9.2.

In absence of shear force, for Class 3 cross-sections the maximum longitudinal stress should satisfy the criterion:

$$\sigma_{x,Ed} \leq \frac{f_y}{\gamma_{M0}}$$

Class 4 cross-sections

EN 1993-1-1 article 6.2.9.3.

In absence of shear force, for Class 4 cross-sections the maximum longitudinal stress should satisfy the criterion:

$$\sigma_{x,Ed} \le \frac{f_y}{\gamma_{M0}}$$

The following criterion should be met:

$$\frac{N_{Ed}}{A_{eff} \cdot \frac{f_y}{\gamma_{M0}}} + \frac{M_{y,Ed} + N_{Ed} \cdot e_{Ny}}{W_{eff,y,min} \cdot \frac{f_y}{\gamma_{M0}}} + \frac{M_{z,Ed} + N_{Ed} \cdot e_{Nz}}{W_{eff,z,min} \cdot \frac{f_y}{\gamma_{M0}}} \leq 1$$

Where A_{eff} is the effective area of the cross-section when subjected to uniform compression

- $W_{\text{eff, min}}\,$ is the effective section modulus of the cross-section when subjected only to moment about the relevant axis
- e_N is the shift of the relevant centroidal axis when the cross-section is subjected to compression only.

Example: Industrial hall.esa

Consider column B28 (for combination CO1-ULS).

Compression check

According to EN 1993-1-1 article 6.2.4 and formula (6.9)

A	1,7500e+04	mm ²
Nc,Rd	4112,50	kN
Unity check	0,04	-

⇒ n = 0,04

Shear check for Vy

According to EN 1993-1-1 article 6.2.6 and formula (6.17)

Eta	1,20	
Av	9,2698e+03	mm ²
Vpl,y,Rd	1257,69	kN
Unity check	0,00	-

Shear check for Vz

According to EN 1993-1-1 article 6.2.6 and formula (6.17)

Eta	1,20	
Av	9,9222e+03	mm ²
Vpl,z,Rd	1346,22	kN
Unity check	0,08	-

⇒ Unity check for shear force is smaller than 0,5, thus no reduction of the yield strength for the combined check.

Combined bending, axial force and shear force check

According to EN 1993-1-1 article 6.2.9.1 and formula (6.41)

Mpl,y,Rd	1143,28	kNm
Alpha	2,00	
Mpl,z,Rd	144,31	kNm
Beta	1,00	

Unity check (6.41) = 0,01 + 0,00 = 0,01 -

Note: Since the shear forces are less than half the plastic shear resistances their effect on the moment resistances is neglected.

Note: Since the axial force satisfies both criteria (6.33) and (6.34) of EN 1993-1-1 article 6.2.9.1(4) its effect on the moment resistance about the y-y axis is neglected.

Note: Since the axial force satisfies criteria (6.35) of EN 1993-1-1 article 6.2.9.1(4) its effect on the moment resistance about the z-z axis is neglected.

ULS Stability Check

The stability check can be found in SCIA Engineer under "Steel -> Beams -> ULS check -> Check". In this menu the user can choose to look at the "Brief" output and or the "Detailed output".

With the brief output the results are shown in one line.

With the detailed output, the results of all the unity checks are shown including a reference to the used formula in the EN 1993-1-1 for each check.

In below the Stability Check will be explained and the detailed results are shown.

Not all stability checks are inputted in SCIA Engineer for all cross sections. In the table below an overview of the possible checks for each section is given:

Section	Buckling	LTB	Shear buckling	
1	x	x	x	
RHS	x	x		
CHS	x	x		
L	x	(*2)		
U	x	(*2)	x	
т	x	(*2)		
PPL	x	x	x	
RS	x	(*2)		
z	x	(*2)		
0	x	(*2)		
Σ	(*1)	(*2)	x	
NUM	(*1)	(*2)		
СОМ	(*1)	(*2)		

- (*1) Buckling curve are introduced manually by user
- (*2) General formula for M_{cr} see chapter 'Lateral Torsional Buckling'

And in the chapter "Cross sections" an explanation is given which sections are recognized under which form type (I, RHS, L, CHS, ...).

Classification

There is a difference on the section of classification in the Section check and the Stability check:

Classification in the section check:

Here the classification is done for each section on the member and afterwards the Section check will be executed with the classification and the internal forces on this section.

Classification in the Stability Check

In the stability check the highest classification along the member is used for the stability check on all the sections.

So when having a beam with the highest check on 2m from the beginning of the beam:

- The section check will take into account the internal forces on 2m from the beginning of the beam and perform a classification with those internal forces.

The stability check will perform a stability check with the internal forces on 2m of the beginning of the beam, but not with the classification on this place. Perhaps this section has the highest moment in comparison with a compression force. The classification can result here in Class one.

But in the beginning of the beam, the bending moment is equal to zero, so perhaps the classification here will be Class 4. The stability check will thus take the internal forces of section 2m on the member, but take into account the classification Class 4 (from 0m on the member).

Flexural buckling check

The flexural buckling check will be executed following EN 1993-1-1 art. 6.3.1.

$$\frac{N_{Ed}}{N_{b,Rd}} \le 1$$

Where

 $N_{b,Rd} = \frac{\chi \cdot A \cdot f_y}{\gamma_{M1}}$ For class 1, 2 or 3 cross sections $N_{b,Rd} = \frac{\chi \cdot A_{eff} \cdot f_y}{\gamma_{M1}}$ For class 4 cross sections

The reduction factor $\boldsymbol{\chi}$ will be calculated as follows:

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}}$$
 but $\chi \le 1,0$

with

$$\Phi \qquad 0.5 \left[1 + \alpha \left(\bar{\lambda} - 0.2\right) + \bar{\lambda}^2\right]$$

$$\bar{A} = \sqrt{\frac{A \cdot f_y}{N_{cr}}}$$
For class 1, 2 or 3 cross-sections
$$\sqrt{\frac{A_{eff} \cdot f_y}{N_{cr}}}$$
For class 4 cross-sections

 N_{cr} Critical normal force (Euler force) $N_{cr} = \frac{\pi^2 EI}{k^2 L^2}$

 α Imperfection depending on the buckling curve:

Buckling curve	a ₀	а	b	с	d
Imperfection factor α	0,13	0,21	0,34	0,49	0,76

The selection of the buckling curve for a cross section is done with EN 1993-1-1, Table 6.2

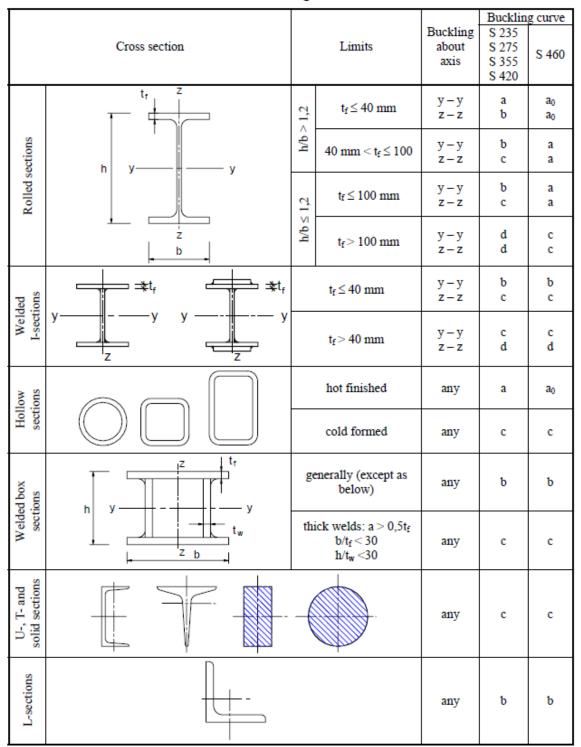


Table 6.2: Selection of buckling curve for a cross-section

In SCIA Engineer the calculation of the buckling coefficient k_y or k_z can be done automatically or can be inputted by the user.

In the next paragraph the calculation of the Buckling factors is explained.

Example: Buckling Curves.esa

In Table 6.2 general buckling curves are given for the most common profiles. For some cross-section types, SCIA Engineer will automatically use these curves. The cross-section types that are supported are:

- Profile library
- Haunch
- Sheet welded
- Build-in beams
- Thin-walled geometric
- Fabricated

For the other cross-section types, the buckling curves for both directions are by default set to d. This can be changed manually by changing the properties of the cross-section.

In this example 2 beams are inputted with 2 different cross-sections:

- B1: CS1 IPE 180:
 - o buckling curve a for y-y according to code
 - o Stability check uses curve a, according to code
- B2: CS2 I form
 - o Non standard section: no buckling curve according to code. Buckling curve d is used.
 - Cross-section th [mm] 9 General Normal colou Draw colour Colour AutoDesign constraints Fabrication general Buckling c Edit buckling curves s 5 Flexural buckling y-y d 80 Flexural buckling z-z d y Lateral torsional buckling Ξ Fibres and Parts 1.0 Fibre text zoom Edit named items 2D FEM analysis the Use 2D FEM analysis V ∞ Mesh size [mm] 0 V 5 Min. point distance [mm] 0 Shear area Ay Without τ xz Without τx Shear area Az Ŧ Export Update Document 🔀 Picture 👯 Fibres Prandtl dF/dy dF/dz Warping Tau xy Ta... 🕨 OK Cance Cross-section layout and dime
 - o Stability check uses curve d

Buckling factors

General method

By default, for the calculation of the buckling ratios, two approximate formulas are used: one formula for a non sway structure (resulting in a buckling factor smaller (or equal) than 1) and one formula for a sway structure (resulting in a buckling factor higher (of equal) than 1.

So it is important for this method that the user chooses the correct option sway or non sway for the two local directions:

yy: buckling around the local y-axis (so deformation in the direction of the local z-axis)

zz: buckling around the local z-axis (so deformation in the direction of the local y-axis)

The option "sway" or "non sway" can be chosen in the menu "Steel -> Beams -> Steel Setup" for the whole structure:

 Standard EN Steel Member check Relative deformation Fire resistance Buckling defaults Limit slenderness Cold Formed Plated structural elements Default sway types EN 1993-1-1: 6.2.7 Limit for torsion [-] 0,05 Default sway types EN 1993-1-1: 6.3.1 'y-y 'z-z no Buckling length ratios ky, kz EN 1993-1-1: 6.3.1 Max. k ratio [-] 10,00 Max. k ratio [-] 200,00 2nd order buckling ratios Acc. to input Lateral Torsional Buckling EN 1993-1-1: 6.3.2 Lateral torsional Buckling curves General case Method for C1 C2 C3 ECCS 119/Galea Method for k₀ EN 1993-1-1: table 6.6 General settings Elastic verification no Verify only section checks no Flexural buckling accounted for by 2nd order cal no 		Steel setup	
Member check EN 1993-1-1 Relative deformation Fire resistance Buckling defaults Imit slenderness Cold Formed Default sway types Plated structural elements Default sway types EN 1993-1-1: 6.2.7 Limit for torsion [-] 0,05 Default sway types EN 1993-1-1: 6.3.1 y-y ✓ yes z-z In no Buckling length ratios ky, kz EN 1993-1-1: 6.3.1 Max. k ratio [-] 10,00 Max. slenderness [-] 200,00 2 nd order buckling ratios Acc. to input Lateral Torsional Buckling EN 1993-1-1: 6.3.2 Lateral torsional buckling curves General case Method for k ₀ EN 1993-1-1: 1 table 6.6 General settings Elastic verification no Verify only section checks no Flexural buckling accounted for by 2 nd order cal no	tandard EN	∃ Steel	
Relative deformation Shear EN 1993-1-1: 6.2.6 Fire resistance Use A _y , A _z instead of elastic shear In o Buckling defaults Torsion EN 1993-1-1: 6.2.7 Limit slenderness Default sway types EN 1993-1-1: 6.3.1 Y-Y Yes Z-z Buckling length ratios ky, kz EN 1993-1-1: 6.3.1 Max. k ratio [-] 10,00 Max. slenderness [-] 200,00 2 rd order buckling ratios Acc. to input Lateral Torsional buckling curves General case Method for C1 C2 C3 ECCS 119/Galea Method for k _o EN 1993-1-1: table 6.6 General settings Elastic verification Elastic verification no File provide second for by 2 nd order cal no		Member check EN 1993	3-1-1
Fire resistance Use Ay, Az instead of elastic shear no Buckling defaults Torsion EN 1993-1-1: 6.2.7 Limit slenderness Cold Formed 0,05 Plated structural elements Default sway types EN 1993-1-1: 6.3.1 'y-y 'y'y 'y'y z-z no Inc Buckling length ratios ky, kz EN 1993-1-1: 6.3.1 Max. k ratio [-] 10,00 Max. slenderness [-] 200,00 2 nd order buckling ratios Acc. to input Lateral Torsional Buckling EN 1993-1-1: 6.3.2 Lateral Torsional Buckling curves General case Method for C1 C2 C3 ECCS 119/Galea Method for Kc EN 1993-1-1: table 6.6 General settings Elastic verification Elastic verification no Yerify only section checks no		EN 1993	3-1-1: 6.2.6
Buckling defaults EN 1993-1-1: 6.2.7 Limit slenderness 0.05 Cold Formed Default sway types EN 1993-1-1: 6.3.1 Plated structural elements y-y y yes z-z no Buckling length ratios ky, kz EN 1993-1-1: 6.3.1 Max. k ratio [-] 10,00 Max. slenderness [-] 200,00 2 nd order buckling ratios Acc. to input Lateral Torsional Buckling Elateral torsional buckling curves General case Method for C1 C2 C3 ECCS 119/Galea Method for k _o EN 1993-1-1: table 6.6 General settings Elastic verification no Elastic verification no Plated structural buckling accounted for by 2 nd order cal		Use A _{ve} A _z instead of elastic shear	
Cold Formed Default sway types EN 1993-1-1: 6.3.1 Plated structural elements y-y y yes z-z mo Buckling length ratios ky, kz EN 1993-1-1: 6.3.1 Max. k ratio [-] 10,00 Max. slenderness [-] 200,00 2 nd order buckling ratios Acc. to input Lateral Torsional Buckling EN 1993-1-1: 6.3.2 Lateral Torsional Buckling EN 1993-1-1: 6.3.2 Lateral Torsional Buckling curves General case Method for C1 C2 C3 ECCS 119/Galea Method for k _o EN 1993-1-1: table 6.6 General settings Elastic verification Elastic verification no Verify only section checks no Flexural buckling accounted for by 2 nd order cal no	-		3-1-1: 6.2.7
Plated structural elements Default sway types EN 1993-1-1: 6.3.1 y-y y-y y-y z-z no Buckling length ratios ky, kz EN 1993-1-1: 6.3.1 Max. k ratio [-] 10,00 Max. slenderness [-] 200,00 2 nd order buckling ratios Acc. to input Lateral Torsional Buckling EN 1993-1-1: 6.3.2 Lateral torsional buckling curves General case Method for C1 C2 C3 ECCS 119/Galea Method for k _o EN 1993-1-1 table 6.6 General settings Elastic verification Elastic verification no Verify only section checks no Flexural buckling accounted for by 2 nd order cal no		Limit for torsion [-] 0,05	
z-z no Buckling length ratios ky, kz EN 1993-1-1: 6.3.1 Max. k ratio [-] 10,00 Max. slenderness [-] 200,00 2 nd order buckling ratios Acc. to input E Lateral Torsional Buckling EN 1993-1-1: 6.3.2 Lateral torsional buckling curves General case Method for Cl C2 C3 ECCS 119/Galea Method for k _o EN 1993-1-1 table 6.6 General settings Elastic verification Elastic verification no Verify only section checks no Flexural buckling accounted for by 2 nd order cal no		Default sway types EN 1993	3-1-1: 6.3.1
Buckling length ratios ky, kz EN 1993-1-1: 6.3.1 Max. k ratio [-] 10,00 Max. slenderness [-] 200,00 2 nd order buckling ratios Acc. to input Lateral Torsional Buckling EN 1993-1-1: 6.3.2 Lateral torsional buckling curves General case Method for C1 C2 C3 ECCS 119/Galea Method for k _o EN 1993-1-1 table 6.6 General settings Elastic verification Elastic verification no Verify only section checks no Flexural buckling accounted for by 2 nd order cal no		y-y Ves	
Max. k ratio [-]10,00Max. slenderness [-]200,002 nd order buckling ratiosAcc. to inputLateral Torsional BucklingEN 1993-1-1: 6.3.2Lateral torsional buckling curvesGeneral caseMethod for C1 C2 C3ECCS 119/GaleaMethod for k _o EN 1993-1-1: table 6.6General settingsElastic verificationVerify only section checksnoFlexural buckling accounted for by 2 nd order calno		z-z no	
Max. slenderuss [-] 200,00 2 nd order buckling ratios Acc. to input Lateral Torsional Buckling EN 1993-1-1: 6.3.2 Lateral torsional buckling curves General case Method for C1 C2 C3 ECCS 119/Galea Method for k _o EN 1993-1-1: table 6.6 General settings Elastic verification Elastic verification no Verify only section checks no Flexural buckling accounted for by 2 nd order cal no		Buckling length ratios ky, kz EN 1993	3-1-1: 6.3.1
2 nd order buckling ratios Acc. to input Lateral Torsional Buckling EN 1993-1-1: 6.3.2 Lateral torsional buckling curves General case Method for C1 C2 C3 ECCS 119/Galea Method for k _o EN 1993-1-1 table 6.6 General settings Elastic verification Verify only section checks In no Flexural buckling accounted for by 2 nd order cal In o		Max. k ratio [-] 10,00	
Lateral Torsional Buckling EN 1993-1-1: 6.3.2 Lateral torsional buckling curves General case Method for C1 C2 C3 ECCS 119/Galea Method for k _o EN 1993-1-1 table 6.6 General settings Elastic verification Verify only section checks no Flexural buckling accounted for by 2 nd order cal no		Max. slenderness [-] 200,00	
Lateral Torsional Buckling EN 1993-1-1: 6.3.2 Lateral torsional buckling curves General case Method for C1 C2 C3 ECCS 119/Galea Method for k _o EN 1993-1-1 table 6.6 General settings Elastic verification Verify only section checks no Flexural buckling accounted for by 2 nd order cal no		2 nd order buckling ratios Acc. to	input 🔹
Method for C1 C2 C3 ECCS 119/Galea Method for k _o EV 1993-1-1 table 6.6 General settings Elastic verification Elastic verification In no Verify only section checks In no Flexural buckling accounted for by 2 nd order cal In no			3-1-1: 6.3.2
Method for k _o EN 1993-1-1 table 6.6 General settings Elastic verification Elastic verification In no Verify only section checks In no Flexural buckling accounted for by 2 nd order cal In no		Lateral torsional buckling curves General	l case 🔹
□ General settings Elastic verification □ no Verify only section checks □ no Flexural buckling accounted for by 2 nd order cal □ no		Method for C1 C2 C3 ECCS 1	19/Galea 🔹
Elastic verification Image: no Verify only section checks Image: no Flexural buckling accounted for by 2 nd order cal Image: no		Method for k _o EN 1993	3-1-1 table 6.6 🔹
Verify only section checks In no Flexural buckling accounted for by 2 nd order cal In no		General settings	
Flexural buckling accounted for by 2 nd order cal		Elastic verification	
		Verify only section checks	
		Flexural buckling accounted for by 2 nd order cal	
Moments on columns in simple construction		Moments on columns in simple construction	

It the option is checked (as here for buckling around the y-axis), it is indicated that the construction is not braced enough and can be considered as "sway".

This can also be changed for each beam separately, using the buckling data. This can be found under "Steel -> Beams -> Member Check data -> Member buckling data":

•	Buckling data		<
Ly Dz Dy Lz Lyz Ltb	Buckling data Name Edit buckling Member(s) material Buckling ky, kz coefficients or buckling lengths All other and LTB coefficients Buckling systems relation zz yz Secondary member coefficient ky factor kz factor Sway yy Sway zz	BB1	
		OK Cancel	:

For Sway yy and Sway zz there are 3 options:

- According to Steel>Beams>Setup: The same option will be taken as in the steel setup as shown above.
- Yes: this beam will be considered as "sway" in this direction.
- No: this beam will be considered as "non sway" in this direction.

The following formulas are used for the buckling ratios:

• for a non sway structure :

$$k = \frac{(\rho_1 \rho_2 + 5\rho_1 + 5\rho_2 + 24)(\rho_1 \rho_2 + 4\rho_1 + 4\rho_2 + 12)2}{(2\rho_1 \rho_2 + 11\rho_1 + 5\rho_2 + 24)(2\rho_1 \rho_2 + 5\rho_1 + 11\rho_2 + 24)}$$

the buckling factor

• for a sway structure :

k

$$k = x \sqrt{\frac{\pi^2}{\rho_1 x} + 4}$$

with

	0
L	the system length
Е	the modulus of Young
I	the moment of inertia
Ci	the stiffness in node i
Mi	the moment in node i
φ _i	the rotation in node i

$$x = \frac{4\rho_1\rho_2 + \pi^2\rho_1}{\pi^2(\rho_1 + \rho_2) + 8\rho_1\rho_2}$$
$$\rho_i = \frac{C_i L}{EI}$$
$$C_i = \frac{M_i}{\phi_i}$$

The values for M_i and ϕ_i are approximately determined by the internal forces and the deformations, calculated by load cases which generate deformation forms, having an affinity with the buckling form. So when performing a linear calculation, in the background 2 additional load cases are calculated, just to calculated the buckling factors for the elements.

This calculation is automatically done when calculating the construction linearly. So when calculating non linear, the user should also perform a linear calculation otherwise no buckling factors are calculated and no steel code check can be performed.

The following load cases are considered in the linear calculation for the calculation of the buckling factors:

- load case 1:
 - $_{\odot}$ $\,$ on the beams, the local distributed loads qy=1 N/m and qz=-100 N/m are used
 - $\circ~$ on the columns the global distributed loads Qx =10000 N/m and Qy =10000 N/m are used.
- load case 2:
 - \circ on the beams, the local distributed loads qy=-1 N/m and qz=-100 N/m are used
 - on the columns the global distributed loads Qx =-10000 N/m and Qy=-10000 N/m are used.

The used approach gives good results for frame structures with **perpendicular rigid or semi-rigid beam** connections. For other cases, the user has to evaluate the presented bucking ratios.

Example: Buckling Factor.esa

Consider Column B1:

- L = 4000mm
- Set as sway
- In node N1 : My = 0 kNm => $C_2 = \rho_2 = 0.0$
- This node N1 defines ρ_2 because ρ_2 is always the smallest of the two.
- In node N2 for Loadcase LC1:
 - M_{y1} = 79833 kNm
 - $\circ \quad \varphi_1 = fiy = 1530.6 \ mrad$
 - $\circ \quad C_1 = M_{y1}/\,\phi_1 \ = 79833 \ kNm \ / \ 1530.6 \ mrad = 52.158 \ kNm/mrad \\ = 5,2158 \ x \ 10^{10} \ Nmm/rad$
 - E = 210 000 N/mm²
 - \circ Iy = 16270000 mm⁴

$$\circ \quad \rho_1 = \frac{C_{iL}}{EI} = \frac{\frac{5.2158 \cdot 10^{10} Nmm}{rad} \cdot 4000 mm}{210000 \frac{N}{mm^2} \cdot 162700000 mm^4} = 6.106$$

$$x = \frac{4\rho_1\rho_2 + \pi^{2}\rho_1}{\pi^2(\rho_1 + \rho_2) + 8\rho_1\rho_2} = \frac{4 \cdot 6.106 \cdot 0.0 + \pi^2 \cdot 6.106}{\pi^2(6.106 + 0.0) + 8 \cdot 6.106 \cdot 0.00} = 1.0$$

$$k = x \sqrt{\frac{\pi^2}{\rho_1 x}} + 4 = 1.0 \sqrt{\frac{\pi^2}{6.11 \cdot 1.00}} + 4 = 2.37$$

$$N_{cr} = \frac{\pi^2 EI}{k^2 L^2} = \frac{\pi^2 \cdot 210000 N / mm^2 \cdot 162700000 mm^4}{(2.37)^2 (4000)^2} = 3752200 N = 3752.2 kN$$

Those values can also be found in SCIA Engineer:

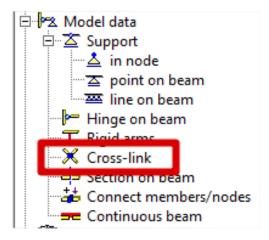
Under "Steel -> Beams -> Steel slenderness" the buckling length k_y will be found:

Steel slenderness

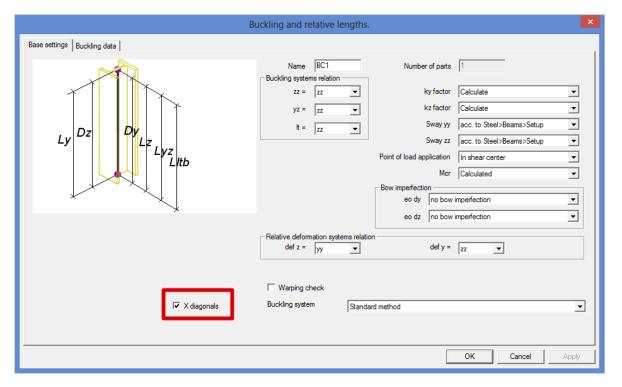
Linear calculation

Member	CS Name	Part	Sway y Sway z	[m]		ly [m] Iz [m]	Lam y [-] Lam z [-]	lyz [m]	I LTB [m]
B1	CS1	1	Yes	4,000	2,37	9,466	63,28	4,000	4,000
			Yes	4,000	1,00	4,000	105,61		

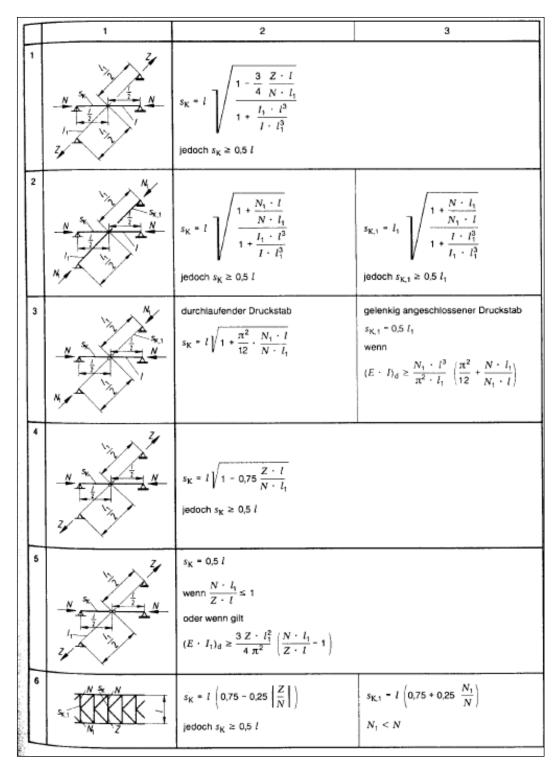
This value can also be found in the stability check through "Steel -> Beams -> ULS Check -> Check" under the buckling parameters. And here also the critical normal force Ncr can be found:


Buckling parameters	уу
Sway type	sway
System length L	4,000
Buckling factor k	2,37
Buckling length Lar	9,466
Critical Euler load Nor	3763,44
Slenderness Lambda	63,28
Relative slenderness Lambda, rel	0,67
Limit slenderness Lambda, rel, 0	0,20

Calculation of the buckling factors for crossing diagonals


As the previous default method is only valid for perpendicular connection, this can't be used for the calculation of the buckling factors for diagonals.

In the DIN 1880 Teil 2, Table 15 a method is given for the calculation of the buckling factor for crossing diagonals. In SCIA Engineer this option is also implemented. In this method the buckling length s_K is calculated in function of the load distribution in the element and s_K is not a purely geometrical data.


This method is only applicable for 2 diagonals with a hinged or rigid connection in the middle. To use this functionality in SCIA Engineer, the user has to connect the two diagonals with the option "Cross-link", which can be found in the menu Structure:

When connecting two beams with this option, in the buckling and relative lengths properties of the two beams the option **X-diagonals** can be checked:

If this option is used, SCIA Engineer will use the method from the DIN to calculate the buckling factors for the diagonals.

With:

s _K buckling	length
-------------------------	--------

- L member length
- I₁ length of supporting diagonal
- I moment of inertia (in the buckling plane) of the member
- I_1 moment of inertia (in the buckling plane) of the supporting diagonal
- N compression force in member
- N₁ compression force in supporting diagonal

- Z tension force in supporting diagonal
- E elastic modulus

Calculation of the buckling length for a VARH-element

For a VARH element, SCIA Engineer will use another calculation for the buckling length.

A VARH element is defined as follows:

The member has the properties of a symmetric I section where only the height is linear variable along the member. The system length for buckling around the local yy axis (strong axis), is equal to the member length.

For a VARH element (form node i to node j), we can define

L	beam length
l _i , l _i	moment of inertia at end i and j
A _i ,	sectional area at end i and j
A _i	
E	modulus of Young
N _{cr}	critical Euler force
R _i ,	beam stiffness at end i and j
R _i	

The stiffness R and R' is given by:

$$R = \frac{M}{\Phi}$$

$$R_{i'} = R_i \frac{L}{EI_i}$$

$$R_{j'} = R_j \frac{L}{EI_i}$$

$$\xi = \sqrt{\frac{I_j}{I_i}}$$

The critical Euler force is given by:

$$N_{cr} = \frac{\alpha^2 E I_i}{k^2 L^2}$$

To calculate α , the next steps are followed:

- 1. Calculate L, I_i, I_j, R_i, R_j, R'_i, R'_j, ξ
- 2. We suppose that

$$\frac{\alpha}{\xi-1} > \frac{1}{2}$$

3. Calculate a, b, c and d as follows

$$\beta = \sqrt{\frac{\alpha^2}{(\xi - 1)^2} - \frac{1}{4}}$$

$$a = \frac{1}{\alpha^2} [1 + (\xi - 1)(\frac{1}{2} - \beta \cot(\beta \ln \xi))]$$

$$b = c = \frac{1}{\alpha^2} [1 - \frac{\beta}{\sin(\beta \ln \xi)} \frac{\xi - 1}{\sqrt{\xi}}]$$

$$d = \frac{1}{\alpha^2} [1 + \frac{(\xi - 1)}{\xi} (\frac{1}{2} + \beta \cot(\beta \ln \xi))]$$

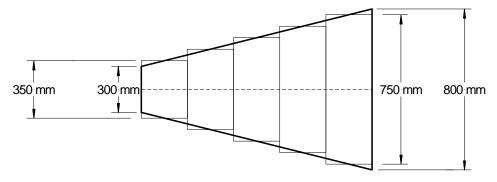
4. For a beam in non-sway system, we solve $1+a\,R_{i'}+d\,R_{j'}+(ad$ - $bc)\,R_{i'}R_{j'}=0$

For a beam in sway system, we solve

$$R_{i'}(1-a\alpha^2) + R_{j'}(1-d\alpha^2) - \alpha^2 + R_{i'}R_{j'}(a-b-c+d-\alpha^2(ad-bc)) = 0$$

5. When a solution is found, we check if

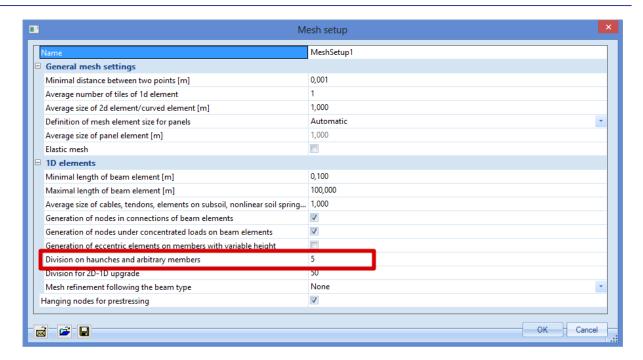
$$\frac{\overline{\alpha}}{\xi - 1} > \frac{1}{2}$$


6. If not, then recalculate a,b,c en d as follows :

$$\begin{split} a &= \frac{1}{\alpha^2} [1 + \frac{(\xi - 1)((\frac{1}{2} - \beta)\xi^{\beta} - (\frac{1}{2} + \beta)\xi^{-\beta})}{\xi^{\beta} - \xi^{\beta}}] \\ b &= c = \frac{1}{\alpha^2} [1 - \frac{2\beta(\xi - 1)}{\sqrt{\xi}(\xi^{\beta} - \xi^{-\beta})}] \\ d &= \frac{1}{\alpha^2} [1 + \frac{(\xi - 1)((\frac{1}{2} - \beta)\xi^{-\beta} - (\frac{1}{2} + \beta)\xi^{\beta})}{\xi(\xi^{\beta} - \xi^{-\beta})}] \end{split}$$

and resolve the proper equation of 4.

Example:


VARH.esa

Consider column B1

The VARH element going from 800mm to 300mm

The VARH is internally divided into a number of prismatic members. In this case, in 5 parts, but this can be changed in the Mesh setup:

- in node N1:
 - o hi = 350 mm
 - \circ Ii = 2.403 10⁻⁴ m⁴
 - $\circ \quad \text{M=0} \rightarrow \text{R}_{i}\text{, }\text{R}_{i}\text{'}\text{=}0.0$
- in node N1:
 - fiy = 1512 mrad
 - My = 79818 kNm
 - E = 210000 N/mm²
 - hj = 750 mm
 - \circ Ii = 1.363 x 10⁹ mm⁴
 - \circ Rj = 5.28 x 10¹⁰
 - R'j = 4.2
 - ο ξ **= 2.38**
 - $\circ \alpha = 1.75$
- \Rightarrow $N_{cr} = 9626.16 \, kN$

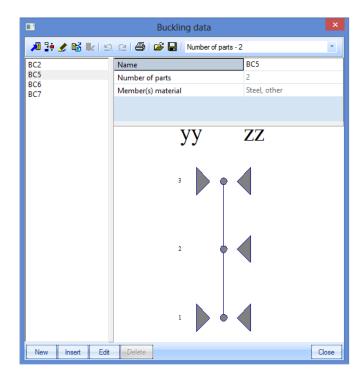
Buckling parameters	уу	ZZ	
Sway type	sway	sway	
System length L	4,000	4,000	m
Buckling factor k		1,00	
Buckling length Lar	7,190	4,000	m
Critical Euler load Nor	9785,96	7001,21	kN
Slenderness Lambda	48,58	57,43	
Relative slenderness Lambda,rel	0,52	0,61	
Limit slenderness Lambda, rel, 0	0,20	0,20	
Buckling curve	b	С	
Imperfection Alpha	0,34	0,49	
Reduction factor Chi	0,88	0,78	
Buckling resistance Nb,Rd	2294,75	2038,29	kN

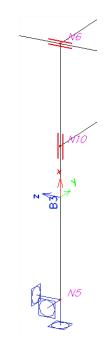
Buckling length

In the previous paragraph the general calculation of the buckling factors has been explained for all type of elements. With this buckling factor the buckling length of the beam will be calculated as follows:

 $l = k \cdot L$

With:


Ithe buckling lengthkthe buckling factorLthe system length


The system length of a beam is defined by the property "Buckling and relative lengths" of the beam.

Example: Buckling Length.esa

Consider column B3. This column has 3 nodes: N5, N10 and N6. The local X direction goes from the bottom to the top of the column, so internal for SCIA Engineer N5 is the first node of this column and N6 the last one.

In the properties window of this column the user can choose for "Buckling and relative lengths". With this option, the system length of the beam can be inputted. Default the following option will appear:

Explanation of the System Lengths:

- The first node (according to the local x-axis) is node N5, the last one is node N6.
- yy direction:
 - o This means around the local y-axis. So the column will deform in the z-direction.
 - Around the y-axis, node N5 is supported. In node N10 no beam can be found in the local z-direction in this point, thus column B3 is not supported around the y-axis in node N10. In node N6 a horizontal beam in the local z-direction can be found and the column will be supported around the local y-axis (yy) in node N6. This is indicated with the triangles in this window:
 - Supported in node N5
 - Not supported in node N10
 - Supported in node N6

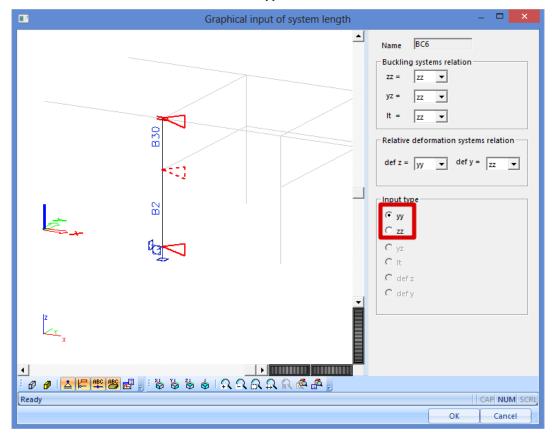
- zz directions:
 - This means **around** the local z-axis. So the column will deform in the y-direction.
 - Around the z-axis, node N5 is supported. In node N10 a horizontal beam in the local ydirection can be found and the column will be supported around the local z-axis (zz) in node N10. Also in node N6 a horizontal beam in the local y-direction can be found and the column will also be supported around the local z-axis (zz) in node N6. This is indicated with the triangles in this window:
 - Supported in node N5
 - Supported in node N10
 - Supported in node N6
- The system length will be taken as follows:
 - \circ Around the y-axis: the length between node N5 and N6: so 3m
 - Around the z-axis: the length between node N5 and N10 for the first part of the beam (1,8m) and the length between N10 and N6 for the second part of the beam: so 1.2m.
 - This can also be found in the menu "Steel -> Beams -> Steel slenderness":

Steel slenderness

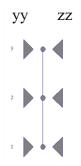
Linear calculation

Member	CS Name	Part	Sway y Sway z	Ly [m] Lz [m]	ky [-] kz [-]	ly [m] Iz [m]	Lam y [-] Lam z [-]	lyz [m]	ILTB [m]
B3	CS3	1	Yes	3,000	1,09	3,277	18,56	1,800	1,800
			No	1,800	0,51	0,919	26,79		
B3	CS3	2	Yes	3,000	1,09	3,277	18,56	1,200	1,200
			No	1,200	0,57	0,681	19,85		

- In this window the user can easily check the system length (Ly and Lz), the buckling factors (ky and kz) and the buckling length (ly = ky x Ly and lz = kz x Lz).
- When clicking on **Edit** in the buckling data window, the triangles indicating the system lengths of each part of a beam can be changed in the second tab "Buckling data":


Buckling and relative lengths.							×						
Base	settings Bucklin	ng data											
	уу	ky	Sway yy	eo dy [mm]	ZZ	kz	Sway zz	eo dz [mm]	kyz	klt	k	kw	
1	Fixed		acc. to B 💌		Fixed		acc. to B 💌		1,00	1,00	1,00	1,00	
2	Free				Fixed		acc. to B 💌		1,00	1,00	1,00	1,00	
3	V Fixed				Fixed								
	-												

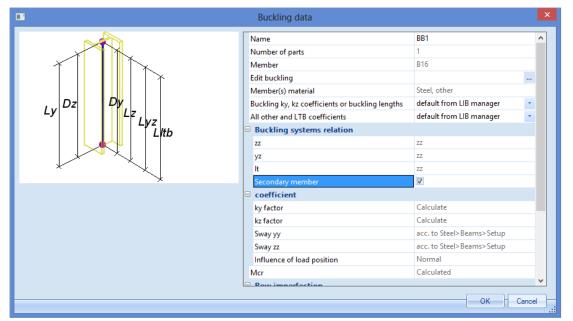
- Compare beam B3 and beams (B2+B30) with each other: they should have exactly the same system lengths. The only difference between those columns is that beam B3 was inputted as a beam of 3m and beams (B2+B30) are divided in two parts. SCIA Engineer will consider those two beams also as one buckling system:
 - When the local axes are exactly in the same direction (so in this case the local x-axis is in the same direction and the angle between the beams is exactly 180°).
 - o If no hinge has been inputted between the two beams.


- There is also a graphical representation of the system lengths:
 - Select beam B2 (or B30)
 - Go to the actions menu and click on Graphical input of system length:

Actions	
Buckling data	
Buckling coefficient	>>>
Graphical input of system length	>>>
Table edit geometry	>>>

• And now the user can choose between the yy and the zz axis:

- Now take a look at beam B13. The system lengths are the following (as expected, because there are horizontal beams in the two directions on each node):

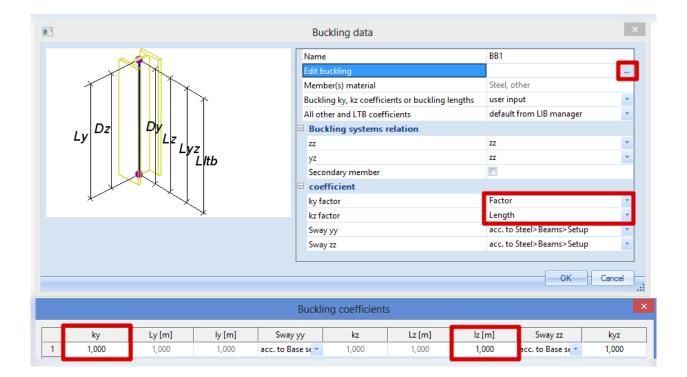


When looking at the rendered view, it will be clear that beam B16 is too weak to have an influence on the system length of beam B13. In SCIA Engineer there is possibility to exclude a beam from a buckling system.

So select beam B16 and go in the Actions menu to Buckling data:

Actions	
Buckling data	>>>
Buckling coefficient	>>>
Graphical input of system length	>>>
Table edit geometry	>>>

In this menu it is possible to indicate that beam B16 is a secondary beam and should not be taken into account in the system lengths:


When looking now at member B13 and changing the Buckling and relative lengths back to "defaults" the member B16 will not be included in the system lengths:

Properties				×
Member (1)	-	Va V/	0	į
A		ø		1
Name	B16			^
Туре	beam (80)		•	
Analysis model	Standard		*	
CrossSection	CS4 - RD8	*		
Alpha [deg]	0,00			
Member system-line at	centre		*	
ey [mm]	0			
ez [mm]	0			
LCS	standard		•	
LCS Rotation [deg]	0,00			
FEM type	standard	_	-	
Buckling and relative lengths	Default	*		l
Layer	Layer1	*		1

Buckling factors/lengths: manual input

The principles of the buckling factor and buckling length are explained in the previous paragraphs. Those default settings can be changed in the menu "Buckling and relative lengths" or in the steel menu with the "member buckling data". This last one has a higher priority, so SCIA Engineer will first look if there are "member buckling data" on a beam. If yes, the program will take into account those properties, if no, the program will look at the properties in "buckling and relative lengths" of the properties window of the member. In the menu "Steel -> Beams -> Member Check data -> Member buckling data" the user can change the "Buckling ky, kz coefficients or buckling lengths" on "user input".

And now the user can choose for ky and kz if those coefficients are calculated (default in SCIA Engineer) or input the buckling factor or even directly the buckling length:

And those properties can be placed on one or more members.

Flexural buckling check in SCIA Engineer

Once all the buckling factors and system lengths have been inputted correctly, the Flexural buckling check can be executed in SCIA Engineer.

Example: Industrial hall.esa

Consider column B28:

The classification of beam B28 is class 4, so an effective cross section has been calculated:

Properties					
sectional area A eff	1.5269e+04	mm ²			
Shear area Vy eff	8.9420e+03	mm ²	Vz eff	6.3269e+03	mm ²
radius of gyration iy eff	320.39	mm	iz eff	58.15	mm
moment of inertia Iy eff	1.5674e+09	mm⁴	Iz eff	5.1634e+07	mm⁴
elastic section modulus Wy eff	4.1630e+06	mm ³	Wz eff	3.9265e+05	mm ³
Eccentricity eny	0.00	mm	enz	0.00	mm

SCIA Engineer will first show the Buckling parameters of this beam:

Flexural Buckling check

According to EN 1993-1-1 article 6.3.1.1 and formula (6.46)

Buckling parameters	уу	ZZ	
Sway type	sway	non-sway	
System length L	6,900	6,900	m
Buckling factor k	3,25	0,99	
Buckling length Lar	22,415	6,832	m
Critical Euler load Nor	6596,08	2293,84	kN
Slenderness Lambda	74,15	125,75	
Relative slenderness Lambda, rel	0,74	1,25	
Limit slenderness Lambda, rel, 0	0,20	0,20	
Buckling curve	а	b	
Imperfection Alpha	0,21	0,34	
Reduction factor Chi	0,83	0,45	
Buckling resistance Nb,Rd	2976,05	1619,63	kN

In below the results of the yy direction are explained.

This direction has been set on "**sway**" in the steel Setup and with this option the **Buckling factor k** is calculated.

The length of the column is 6.900m. So the buckling length = $3.35 \times 6.900 \text{ m} = 22.4 \text{ m}$

With this buckling length the Critical Euler load Ncr can be calculated. Afterwards the slenderness and the Relative slenderness Lambda can be calculated with the critical Euler load.

An IPE750 profile has a buckling curve a, resulting in an Imperfection factor alpha = 0.21.

With those properties the reduction factor χ will be calculated, which will filled in the following formula:

$$N_{b,Rd} = \frac{\chi \cdot A_{eff} \cdot f_y}{\gamma_{M1}}$$

This result in a buckling resistance Nb,Rd = 2976.05 kN for flexural buckling around the local y-axis.

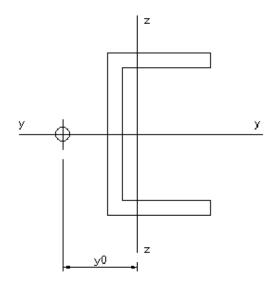
Exactly the same principle can be repeated for flexural buckling around the local z-axis. This will result in a lower buckling resistance: Nb,Rd = 1619.63 kN.

The lowest buckling resistance will be used in the flexural buckling check:

Flexural Buckling verification		
Cross-section effective area Aeff	1,5269e+04	mm ²
Buckling resistance Nb,Rd	1619,63	kN
Unity check	0,10	-

Torsional Buckling

The check on torsional buckling can be important for profiles in which the position of the shear centre is not the same as the centre of gravity of this section.


The design buckling resistance $N_{b,Rd}$ for torsional or torsional-flexural buckling (according to EN 1993-1-1, art 6.3.1.4(3)) shall be obtained using the buckling curve of the z-axis, and with relative slenderness given by:

$$\bar{\lambda} = \sqrt{\frac{f_{yb}}{\sigma_{cr}}\beta_A}$$

$$\begin{split} \sigma_{cr} &= \min \left(\sigma_{cr,T} , \sigma_{cr,TF} \right) \\ \sigma_{cr,T} &= \frac{1}{A_g i_0^2} \left(GI_t + \frac{\pi^2 E C_m}{l_T^2} \right) \\ i_0^2 &= i_y^2 + i_z^2 + y_0^2 \\ \sigma_{cr,TF} &= \frac{1}{2\beta} \left[\left(\sigma_{cr,y} + \sigma_{cr,T} \right) - \sqrt{\left(\sigma_{cr,y} + \sigma_{cr,T} \right)^2 - 4\beta \sigma_{cr,y} \sigma_{cr,T}} \right] \\ \sigma_{cr,y} &= \frac{\pi^2 E}{\left(\frac{l_y}{l_y} \right)^2} \\ \beta &= 1 - \left(\frac{y_0}{l_0} \right)^2 \end{split}$$

with

β _A	the ratio A _{eff} /A
f _{yb}	the basic yield strength
σ_{cr}	the critical stress
$\sigma_{\text{cr},\text{T}}$	the elastic critical stress for torsional buckling
$\sigma_{cr,TF}$	the elastic critical stress for torsional-flexural buckling
G	the shear modulus
Е	the modulus of elasticity
Ι _Τ	the torsion constant of the gross section
C _M	the warping constant
i _y	the radius of gyration about yy-axis
i _z	the radius of gyration about zz-axis
Ι _Τ	the buckling length of the member for torsional buckling (= Lyz)
y ₀	the position of the shear centre
l _y	the buckling length for flexural buckling about the yy-axis

Example: Flexural Torsional buckling.esa

Look at the steel code check for member B1:

Torsional(-Flexural) Buckling check According to EN 1993-1-1 article 6.3.1.1 and formula (6.46)

-		
Torsional buckling length La	3,600	m
Elastic critical load Ncr,T	2084,37	kN
Elastic critical load Ncr,TF	1302,24	kN
Relative slenderness Lambda, rel, T	0,98	
Limit slenderness Lambda, rel, 0	0,20	
Buckling curve	С	
Imperfection Alpha	0,49	
Reduction factor Chi	0,55	
Cross-section area A	5,3300e+03	mm ²
Buckling resistance Nb,Rd	690,40	kN
Unity check	0,14	-

Lateral Torsional Buckling

General

General case

The flexural buckling check will be executed following EN 1993-1-1 art. 6.3.2.

$$\frac{M_{Ed}}{M_{b,Rd}} \le 1$$

Where

$$M_{b,Rd} = \chi_{LT} W_y \frac{f_y}{\gamma_{M1}}$$

 $W_y = W_{pl,y}$ for class 1 or 2 cross-sections $W_y = W_{el,y}$ for class 3 cross-sections $W_y = W_{effy}$ for class 4 cross-sections

The reduction factor χ_{LT} will be calculated as follows:

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \bar{\lambda}_{LT}^2}} \quad \text{but } \chi \le 1,0$$
with
$$\Phi_{LT} = 0.5 [1 + \alpha_{LT} (\bar{\lambda}_{LT} - 0.2) + \bar{\lambda}_{LT}^2]$$

$$\bar{\lambda}_{LT} = \sqrt{\frac{W_y f_y}{2}}$$

$$\bar{\lambda}_{LT} = \sqrt{\frac{W_y f_y}{M_{cr}}}$$

M_{cr} Critical bending moment (see next paragraph for this calculation)

α

Imperfection depending on the buckling curves:

Buckling curve	а	b	с	d
Imperfection factor α_{LT}	0,21	0,34	0,49	0,76

Cross-section	Limits	Buckling curve
Polled L sections	$h/b \le 2$	а
Rolled I-sections	h/b > 2	b
Welded I-sections	$h/b \le 2$	с
	h/b > 2	d
Other cross-sections	-	d

With the following recommended buckling curves for lateral torsional buckling:

For slendernesses $\bar{\lambda}_{LT} \leq 0.2$ of for $\frac{M_{Ed}}{M_{CT}} \leq 0.2^2$ lateral torsional buckling effects may be ignored.

Lateral torsional buckling for rolled sections or equivalent welded sections

In the EN 1993-1-1 a distinction is made between lateral torsional buckling for general cases and for rolled sections or equivalent welded sections.

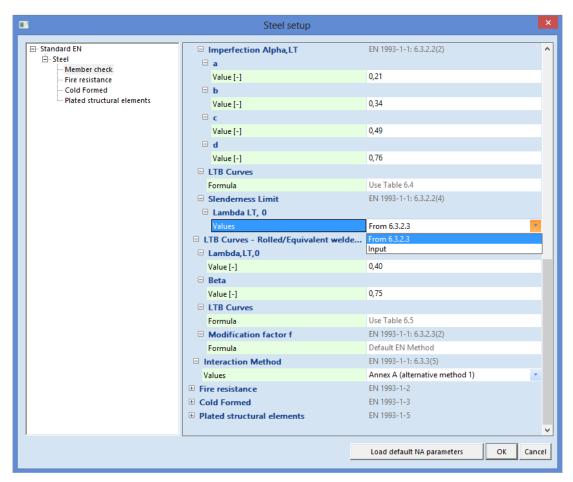
This distinction can also be chosen in SCIA Engineer through "Steel -> Beams -> Steel setup" this can be chosen for all the beams:

	Steel setup	
⊡- Standard EN	Name	Standard EN
🖻 - Steel	Steel	
Member check Relative deformation	Member check	EN 1993-1-1
Fire resistance	Shear	EN 1993-1-1: 6.2.6
···· Buckling defaults	Use A _v , A _z instead of elastic shear	no
- Limit slenderness		EN 1993-1-1: 6.2.7
Cold Formed Plated structural elements	Limit for torsion [-]	0.05
	Default sway types	EN 1993-1-1: 6.3.1
	у-у	V yes
	z-z	no l
	Buckling length ratios ky, kz	EN 1993-1-1: 6.3.1
	Max. k ratio [-]	10,00
	Max. slenderness [-]	200,00
	2 nd order buckling ratios	Acc. to input
	Lateral Torsional Buckling	EN 1993-1-1: 6.3.2
	Lateral torsional buckling curves	General case
	Method for C1 C2 C3	General case
	Mathead Gards	Rolled section or equivalent welded

With this option the reduction factor for Lateral Torsional buckling is calculated a bit differently:

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \beta \overline{\lambda}_{LT}^2}}$$

But: $\chi_{LT} \leq 1,0$
 $\chi_{LT} \leq \frac{1}{\overline{\lambda}_{LT}^2}$
 $\Phi_{LT} = 0.5 [1 + \alpha_{LT} (\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0}) + \beta \overline{\lambda}_{LT}^2]$
And


 $\bar{\lambda}_{LT,O}$ = 0,4 (maximum value)

 β = 0,75 (minimum value)

Cross-section	Limits	Buckling curve
Rolled I-sections	$h/b \le 2$	b
Kolled 1-sections	h/b > 2	с
Welded I-sections	$h/b \le 2$	с
	h/b > 2	d

For slendernesses $\overline{\lambda}_{LT} \leq \overline{\lambda}_{LT,O}$ of for $\frac{M_{Ed}}{M_{CT}} \leq \overline{\lambda}_{LT,O}^2$ lateral torsional buckling effects may be ignored.

Following EN 1993-1-1 article 6.3.2.3: $\overline{\lambda}_{LT,O}$ = 0.4 but this can be adapted in the national annex of a country and also in SCIA Engineer:

The reduction factor χ_{LT} may be modified as follows:

$$\chi_{LT,mod} = \frac{\chi_{LT}}{f}$$

f may be defined in the National Annex.

The following minimum values are recommended:

$$f = 1 - 0.5(1 - k_c)[1 - 2.0(\bar{\lambda}_{LT} - 0.8)^2]$$

But f \le 1.0

With k_c by default taken from the next table:

Moment distribution	k _c		
$\psi = 1$	1,0		
	$\frac{1}{122 \cdot 0.22}$		
-1 ≤ ψ ≤ 1	1,33 – 0,33ψ		
	0,94		
	0,90		
	0,91		
	0,86		
	0,77		
	0,82		

Table 6.6: Correction factors k_c

But alternatively k_c can also be calculated from the factor C_1 :

$$k_c = 1/\sqrt{C_1}$$

In SCIA Engineer the user can choose between the standard method or the calculation of k_c in function of C_1 (by default k_c will be taken from Table 6.6) in "Steel -> Beams -> Steel setup":

1	Steel setup		
⊡- Standard EN	Name	Standard EN	
⊡- Steel	Steel		
Member check Relative deformation	Member check	EN 1993-1-1	
- Fire resistance	Shear	EN 1993-1-1: 6.2.6	
···· Buckling defaults	Use A _v , A _z instead of elastic shear	no 🗖	
Limit slenderness Cold Formed	Torsion	EN 1993-1-1: 6.2.7	
Plated structural elements	Limit for torsion [-]	0,05	
	Default sway types	EN 1993-1-1: 6.3.1	
	у-у	🔽 yes	
	z-z	no	
	Buckling length ratios ky, kz	EN 1993-1-1: 6.3.1	
	Max. k ratio [-]	10,00	
	Max. slenderness [-]	200,00	
	2 nd order buckling ratios	Acc. to input	-
	Lateral Torsional Buckling	EN 1993-1-1: 6.3.2	
	Lateral torsional buckling curves	General case	-
	Method for C1 C2 C3	ECCS 119/Galea	-
	Method for k _e	EN 1993-1-1 table 6.6	
	General settings	EN 1993-1-1 table 6.6	
	Elactic verification	Determined from C1	
	Verify only section checks	no no	
	Flexural buckling accounted for by	2 nd order cal 🔲 no	
	Moments on columns in simple co	onstruction 🔲 no	

	Steel setup	
⊡ Standard EN	Name	Standard EN
- Steel	Steel	
- Fire resistance	Member check	EN 1993-1-1
···· Cold Formed	Bow Imperfections	EN 1993-1-1: 5.3.2(3) b)
Plated structural elements	Member Imperfection	EN 1993-1-1: 5.3.4(3)
	Partial Safety Factors	EN 1993-1-1: 6.1(1)
	LTB Curves - General Case	EN 1993-1-1: 6.3.2.2
	LTB Curves - Rolled/Equivalent v	welded EN 1993-1-1: 6.3.2.3(1)
	Lambda,LT,0	
	Value [-]	0,40
	🗆 Beta	
	Value [-]	0,75
	LTB Curves	
	Formula	Use Table 6.5
	Modification factor f	EN 1993-1-1: 6.3.2.3(2)
	Formula	Default EN Method
	Interaction Method	EN 1993-1-1: 6.3.3(5)
	Values	Annex A (alternative method 1)
	Fire resistance	EIN 1993-1-2
	Cold Formed	EN 1993-1-3
	Plated structural elements	EN 1993-1-5

And also the values for beta and Lambda $_{LT,0}$ can be adapted in SCIA Engineer:

Lateral Torsional Buckling Check in SCIA Engineer

This LTB check will also be executed in SCIA Engineer.

Example: Industrial hall.esa

Consider beam B114:

The default method for the calculation of the C-factors has been used. This is also indicated in the preview of the check results:

First the Lateral Torsional Buckling Check will be shown:

Lateral Torsional Buckling check

According to EN 1993-1-1 article 6.3.2.1 & 6.3.2.2 and formula (6.54)

LTB parameters						
Method for LTB curve	General case					
Cross-section plastic modulus Wpl,y	3,5800e+05	mm ³				
Elastic critical moment Mcr	55,82	kNm				
Relative slenderness Lambda, rel, LT	1,23					
Relative slenderness Lambda, rel, T	0,07					
Relative slenderness Lambda, rel, EXTRA	1,30					
Limit slenderness Lambda, rel, LT, 0	0,20					
LTB curve	а					
Imperfection Alpha,LT	0,21					
Reduction factor Chi,LT	0,47					
Design buckling resistance Mb,Rd	39,49	<u>k</u> Nm				
Unity check	0,46	-				

And afterwards the parameters for the calculation of M_{cr} will be shown.

Mcr parameters						
LTB length L	6,000	m				
Influence of load position	no influence					
Correction factor k	1,00					
Correction factor kw	1,00					
LTB moment factor C1	1,13					
LTB moment factor C2	0,45					
LTB moment factor C3	0,53					
Shear center distance d,z	0,00	mm				
Distance of load application z,g	0,00	mm				
Mono-symmetry constant beta,y	0,00	mm				
Mono-symmetry constant z,j	0,00	mm				

Note: C parameters are determined according to ECCS 119 2006 / Galea 2002.

Below this "Mcr Parameters"-window the calculation method for the C parameters will be indicated.

Calculation of M_{cr}

General formula for I sections

For I sections (symmetric and asymmetric), and Rectangular Hollow Sections (RHS), the elastic critical moment for Lateral Torsional Buckling M_{cr} is calculated by the following formula:

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{(k_{LT} \cdot L)^2} \left\{ \sqrt{\left(\frac{k}{k_w}\right)^2 \frac{I_w}{I_z} + \frac{(k_{LT} \cdot L)^2 G I_t}{\pi^2 E I_z} + \left(C_2 z_g - C_3 z_j\right)^2} - \left[C_2 z_g - C_3 z_j\right] \right\}$$

Where

E	the Youn modulus of elasticity (E = 210000 N/mm ² for steel)
G	the shear modulus (G = 80770 N/mm ² for steel)
$k_{LT} \cdot L$	the lateral torsional buckling length of the beam between points which have lateral restraint (= I_{LTB}).
lw	the warping constant
lt	the torsional constant
lz	the moment of inertia about the minor axis
Z_g	the distance between the point of load application and the shear center
k _w	A factor which refers to end warping. Unless special provision for warming fixity is made, k_w should be taken as 1,0.
Zj	$z_j = z_s - 0.5 \int_A (y^2 + z^2) \frac{z}{l_y} dA$
	For doubly symmetric cross-sections: $z_j = 0$
Z _S	the coordinate of the shear center

C₁, C₂ and C₃ are factors depending on the loading and end restraint conditions.

In SCIA Engineer are different methods implemented for the calculation of those C_1 and C_2 factors. Those methods are explained further in this chapter.

Haunched sections (I+Ivar, Iw+Plvar, Iw+Iwvar, Iw+Ivar, I+Iwvar) and composed rail sections (Iw+rail, Iwn+rail, I+rail, I+2PL+rail, I+PL+rail, I+Ud+rail) are considered as equivalent asymmetric I sections.

The formula for Mcr uses the following parameters:

- C1, C2, C3: calculated according to ENV, ECCS or Lopez
- LTB length: klt*L
- k and kw: factors related to the end fixity
- zg: load position
- zj: asymmetry of the section

More details about each parameter are given in separate chapters

LTBII

It is also possible to calculate M_{cr} with a more precise calculation, a second order Lateral Torsional Buckling calculation. This will be explained further in this chapter.

General – calculation of C₁, C₂ and C₃ factors

- C1 : takes into account the shape of the moment diagram
- C2 : takes into account the position of the loading
- C3 : takes into account the asymmetry of the cross section

The coefficients **C1**, **C2** and **C3** can be calculated in SCIA Engineer according to three different methods:

- o ENV 1993-1-1 Annex F
- o ECCS 119/Galea
- o Lopez, Young, Serna

By default the method according to ECCS 119/Galea is applied. The following paragraphs give more information on these methods.

The user can choose between those 3 methods in "Steel -> Beams -> Steel setup":

	Steel setup	
⊡- Standard EN	Name	Standard EN
⊡ ·· Steel	Steel	
	Member check	EN 1993-1-1
- Fire resistance	Shear	EN 1993-1-1: 6.2.6
Buckling defaults	Use A _v , A _z instead of elastic shear	no
Limit slenderness Cold Formed	Torsion	EN 1993-1-1: 6.2.7
Plated structural elements	Limit for torsion [-]	0,05
	Default sway types	EN 1993-1-1: 6.3.1
	у-у	🗸 yes
	Z-Z	no
	Buckling length ratios ky, kz	EN 1993-1-1: 6.3.1
	Max. k ratio [-]	10,00
	Max. slenderness [-]	200,00
	2 nd order buckling ratios	Acc. to input
	Lateral Torsional Buckling	EN 1993-1-1: 6.3.2
	Lateral torsional buckling curves	General case
	Method for C1 C2 C3	ECCS 119/Galea
	Method for k _e	ENV 1993-1-1 Annex F
	E General settings	ECCS 119/Galea
	Elastic Venincation	Lopez, Yong, Serna
	Verify only section checks	

ENV 1993-1-1 *Annex F*

When this setting is chosen, the moment factors are determined according to ENV 1993-1-1 Annex F Ref.[5].

For determining the moment factors (EN 1993-1-1: C1, C2 and C3) for lateral torsional buckling (LTB), we use the standard tables.

The current moment distribution is compared with some standard moment distributions. This standard moment distributions are moment lines generated by a distributed q load, a nodal F load, or where the moment line reach a maximum at the start or at the end of the beam.

The standard moment distributions which is closest to the current moment distribution, is taken for the calculation of the factors C1, C2 and C3.

ECCS 119/Galea

When this setting is chosen, the moment factors are determined according to ECCS 119 Annex B Ref.[34].

The figures given in this reference for C1 and C2 in case of combined loading originate from Ref.[28] which in fact also gives the tabulated values of those figures as well as an extended range.

The actual moment distribution is compared with several standard moment distributions. These standard moment distributions are moment lines generated by a distributed q load, a nodal F load, or where the moment line is maximum at the start or at the end of the beam.

The standard moment distribution which is closest to the actual moment distribution, is taken for the calculation of the factors C_1 and C_2 .

Galea gives results only for C_1 and C_2 factors.

 C_3 is taken from ECCS 119 Annex B tables 63 and 64. The C_3 is determined based on the case of which the C_1 value most closely matches the table value.

Lopez, Yong, Serna

When this method is chosen, the moment factors are determined according to Lopez, Yong, Serna Ref[35].

When using this method the coefficient C_2 and C_3 are set to zero.

The coefficient C_1 is calculated as follows:

$$C_{1} = \frac{\sqrt{\sqrt{k}A_{1} + \left[\frac{(1-\sqrt{k})}{2}A_{2}\right]^{2}} + \frac{(1-\sqrt{k})}{2}A_{2}}{A_{1}}$$

Where:

$$k = \sqrt{k_1 k_2}$$

$$A_1 = \frac{M_{max}^2 + \alpha_1 M_1^2 + \alpha_2 M_2^2 + \alpha_3 M_3^2 + \alpha_4 M_4^2 + \alpha_5 M_5^2}{(1 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5) M_{max}^2}$$

$$A_2 = \left| \frac{M_1 + 2M_2 + 3M_3 + 4M_4 + 5M_5}{9M_{max}} \right|$$

$$\alpha_1 = 1 - k_2$$

$$\alpha_2 = 5 \frac{k_1^3}{k_2^2}$$

$$\alpha_3 = 5 \left(\frac{1}{k_1} + \frac{1}{k_2} \right)$$

$ \alpha_4 = 5 \frac{k_2^3}{k_1^2} $	
$\alpha_1 = 1 - k_1$	
$ \begin{array}{c c} & L/4 \\ \hline M_1 \\ \hline M_2 \\ \hline M_3 \\ \hline M_{max} \end{array} $	$M_{\text{max}} = M_5$ $M_{\text{max}} = M_5$ $M_{\text{max}} = M_5$ M_4 M_4 M_1 M_2 M_3 M_4
With:	
k ₁	Taken equal to k _w
k ₂	Taken equal to k _w
M_1, M_2, M_3, M_4, M_5	The moments M_y determined on the buckling system in the given sections as shown on the above figure. These moments are determined by dividing the beam into 10 parts (11 sections) and interpolating between these sections.
M _{max}	The maximal moment My along the LTB system.

This method is only supported in case both k and k_w equal 0.50 or 1.00.

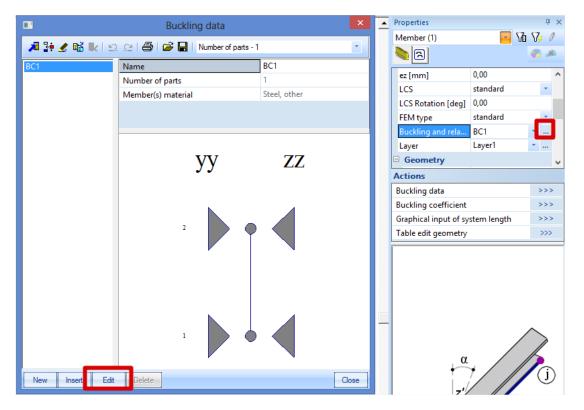
Comparison of the 3 calculation methods

In below an example in SCIA Engineer in which the three methods are calculated:

Example: Cfactors.esa

In the steel setup the chosen calculation method for the C factors has been changed. In below an overview of the results for those factors for the three methods:

Mcr parameters	•	Mcr parameters	Mcr parameters		
LTB length L	12,000	LTB length L	12,000	LTB length L	12,000
Influence of load position	stabilising	Influence of load position	stabilising	Influence of load position	stabilising
Correction factor k	1,00	Correction factor k	1,00	Correction factor k	1,00
Correction factor kw	1,00	Correction factor kw	1,00	Correction factor kw	1,00
LTB moment factor C1	1,89	LTB moment factor C1	1,26	LTB moment factor C1	1,20
LTB moment factor C2	0,33	LTB moment factor C2	0,45	LTB moment factor C2	0,00
LTB moment factor C3	2,64	LTB moment factor C3	0,41	LTB moment factor C3	0,00
Shear center distance d,z	0,00	Shear center distance d,z	0,00	Shear center distance d,z	0,00
Distance of load application z,g	-245,00	Distance of load application z,g	-245,00	Distance of load application z,g	-245,00
Mono-symmetry constant beta,y	0,00	Mono-symmetry constant beta,y	0,00	Mono-symmetry constant beta,y	0,00
Mono-symmetry constant z,j	0,00	Mono-symmetry constant z,j	0,00	Mono-symmetry constant z,j	0,00


There can be a big difference between the three calculation models.

In the method following "Lopez, Yong, Serna" the values for C2 and C3 are always taken equal to zero. When comparing the C1 factors, the method following "ECCS 119/Galea" and "Lopez, Yong, Serna" are approximately the same (1.26 and 1.20 respectively), but the C1 factor following the "ENV 1993-1-1 Annex F" results in total different value: 1.89.

k and kw factors

It is generally assumed that k = kw = 1, which means that the ends are not fixed. If the ends are fixed, values lower than one can be used and this would lead to bigger values of Mcr. You can adapt the values of k and kw from the member buckling data.

Select the member then open the 'Buckling and relative lengths' menu from the properties window:

Click on Edit button and go to Buckling data tab, here you can modify the values for k and kw:

						Buc	kling and r	relative ler	igths.					×
1	Base set	tings Bucklin	ng data											
		уу	ky	Sway yy	eo dy [mm]	ZZ	kz	Sway zz	eo dz [mm]	kyz	klt	k	kw	
	1	V Fixed		acc. to B 💌		V Fixed		acc. to B 💌		1,00	1,00	1,00	1,00	
	2	Fixed				Fixed								

Load position

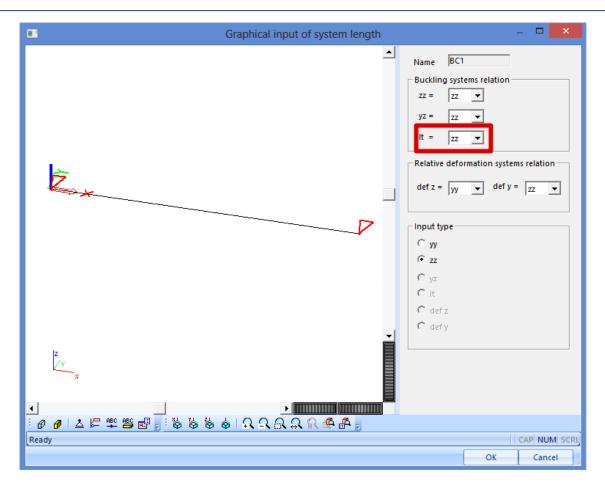
The load position has an influence on calculated Mcr through the value of zg. The user can chose among five load positions.

If you open the Buckling and relative lengths menu, you can see an option called 'Point of load application'. The five possibilities are:

- On top:	the load is applied on the top flange
- In shear center:	the load is applied in the shear center
- On bottom:	the load is applied at the bottom flange
 Always destabilising: 	the load is applied on the destabilising flange
 Always stabilising: 	the load is applied on the stabilising flange

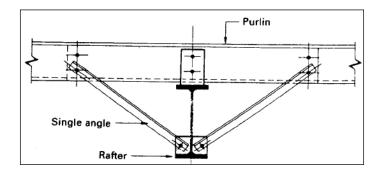
_

Bu	ckling and relative leng	jths.		×
Base settings Buckling data				
	Name BC1 Buckling systems relation	Number of parts	1	
	ZZ = ZZ	▼ ky factor	Calculate	-
	yz = zz	▼ kz factor		-
$L_{y} D_{z} D_{y} D_{L_{z}} D_{z}$	lt = zz	▼ Sway yy		-
Ly = Ly		Sway zz		
		Point of load application	In shear center On top	4
		Mcr Bow imperfection	In shear center On bottom	
		eo dy no bow	Always destabilising Always stabilising	
*		eo dz no bow	imperfection	-
	Relative deformation systems			
	def z = yy	▼ def y =	22 💌	
	Warping check			
🗔 X diagonals	Buckling system	itandard method		•
			OK Cancel App	ply


This value is set to 'In shear center' by default and can be adapted to influence the value of Mcr.

LTB Length

LTB length is calculated as $L_{it} = k_{it} * I_{ref}$ k_{it} is by default taken equal to 1. A smaller value can be used to reduce the LTB length. You can adapt k_{lt} from the member buckling data:


	Buckling and relative lengths.												
Ba	ase sel	ttings Buckling	g data									_	
[уу	ky	Sway yy	eo dy [mm]	ZZ	kz	Sway zz	eo dz [mm]	kyz	klt	k	kw
	1	V Fixed		acc. to Ba 👻		V Fixed		acc. to Ba 💌		1,00	1,00	1,00	1,00
	2	Fixed				Fixed							

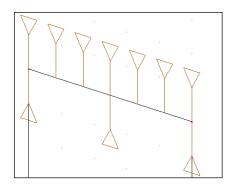
Iref is the reference length. It is by default equal to the reference length around the weak axis (Lz) for both bottom and top flange:

The reference length can be overruled by another value using LTB restraints. These restraints make it possible to define separate conditions for bottom and top flange.

LTB Restraints

In SCIA Engineer Lateral Torsional Buckling restraints can be inputted. Those restraints will change the Lateral Torsional Buckling Length, used for the calculation of M_{cr}:

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{(k_{LT} \cdot L)^2} \left\{ \sqrt{\left(\frac{k}{k_w}\right)^2 \frac{I_w}{I_z} + \frac{(k_{LT} \cdot L)^2 G I_t}{\pi^2 E I_z} + \left(C_2 z_g - C_3 z_j\right)^2} - \left[C_2 z_g - C_3 z_j\right] \right\}$$


Where

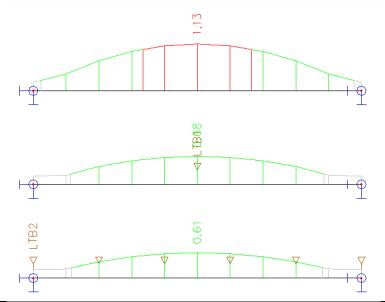
$$k_{LT} \cdot L$$
 the lateral torsional buckling length of the beam between points which have lateral restraint (= I_{LTB}).

This length will be taken as the distance between two LTB restraints.

Fixed LTB restraints are defined on top flange or on bottom flange. The LTB lengths for the compressed flange are taken as distance between these restraints. The LTB moments factors are calculated between these restraints.

The restraints can be inputted via "Steel -> Beams -> Member Check data -> LTB Restraints".

And only the restraints on the compressed side are taken into account.


Example: LTB_Restraints.esa

In this example the same beam has been inputted three times. Since in this example an IPE450 is used, the Lateral torsional buckling curves for "Rolled section or equivalent welded" are used in the steel setup:

	Steel setup			
- Standard EN	Name	Standard EN		
🖻 Steel	Steel			
 Member check Fire resistance 	Member check	EN 1993-1-1		
Cold Formed	Shear	EN 1993-1-1: 6.2.6		
Plated structural elements	Use A _v , A _z instead of elastic shear	🔲 no		
 Limit slenderness Buckling defaults 	Torsion	EN 1993-1-1: 6.2.7		
Relative deformation	Limit for torsion [-]	0,05		
	Default sway types	EN 1993-1-1: 6.3.1		
	у-у	✓ yes		
	2-2	no		
	Buckling length ratios ky, kz	EN 1993-1-1: 6.3.1		
	Max. k ratio [-]	10,0		
	Max. slenderness [-]	200,0		
	2 nd order buckling ratios	Acc. to input		
	Lateral Torsional Buckling	EN 1993-1-1: 6.3.2		
	Lateral torsional buckling curves	Rolled section or equivalent welded		
	Method for CTC2C3	ECCS 119/Galea		
	Method for k _o	EN 1993-1-1 table 6.6		
	General settings			
	Elastic verification	no no		
	Verify only section checks	🔲 no		
	Flexural buckling accounted for by 2 nd order calculation	no no		
	Moments on columns in simple construction	no no		
	Fire resistance	EN 1993-1-2		
	Cold Formed	EN 1993-1-3		
	Plated structural elements	EN 1993-1-5		
	Reference: EN 1993-1-1 article 6.3.2.2, 6.3.2.3 Description: Setting for selecting the lateral torsional buckling curv Application: Used in the determination of the reduction factor for I	res. ateral torsional buckling.		
	Load default no	on-NA parameters Load default NA parameters OK Ca		

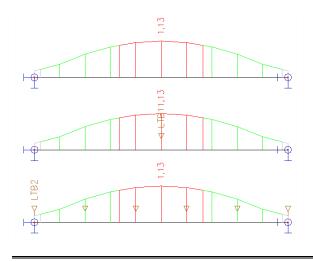
Note: The default setting for LTB curves is 'General case'.

The results for LC1 are:

B1				В	2				
Lateral Torsional Buckling chec According to EN 1993-1-1 artide 6.		6.3.2.3 a	and form	nula (6.54)	Lateral Torsional Buckling che According to EN 1993-1-1 artide 6		1 & 6.3.2.3	and for	rmula (6.5
LTB parameters					LTB parameters				
Method for LTB curve	Alt	ternative	case		Method for LTB curve		Alternativ	e case	
Cross-section plastic modulus Wpl,	y 1,5	7020e-03	3	m ³	Cross-section plastic modulus Wpl,y		1,7020e-0)3	m ³
Elastic critical moment Mcr	28	31,38		kNm	Elastic critical moment Mcr		977,38		kNm
Relative slenderness Lambda, rel, LT	1,:	19			Relative slenderness Lambda, rel, L	Т	0,64		
Limit slenderness Lambda, rel, LT, 0	0,4	40			Limit slenderness Lambda, rel, LT, 0		0,40		
LTB curve	С				LTB curve		С		
Imperfection Alpha,LT	0,4	49			Imperfection Alpha,LT		0,49		
LTB factor Beta	0,7	75			LTB factor Beta		0,75		
Reduction factor Chi,LT	0,9	53			Reduction factor Chi,LT 0,86		0,86		
Correction factor kc	0,9	94			Correction factor kc 0,9		0,91		
Correction factor f 0,98		98			Correction factor f 0,96				
Modified reduction factor Chi,LT,mod 0,54				Modified reduction factor Chi,LT,n	nod	0,90			
Design buckling resistance Mb,Rd	21	216,08		kNm	Design buckling resistance Mb,Rd 3		360,26		kNm
Unity check	1,	1,13		-	Unity check		0,68		-
Mcr parameters					Mcr parameters				
LTB length L	7,000	1	m		LTB length L	3,5	00	m	
Influence of load position	no influ	ienœ			Influence of load position	no	influence		
Correction factor k	1,00				Correction factor k	1,0	0		
Correction factor kw	1,00				Correction factor kw	1,0	0		
LTB moment factor C1	1,13				LTB moment factor C1	1,3	1,33		
LTB moment factor C2	0,45				LTB moment factor C2	0,1	0,12		
LTB moment factor C3	ment factor C3 0,53				LTB moment factor C3	1,0	0		
Shear center distance d,z 0 mm		mm		Shear center distance d,z	0		mm		
Distance of load application z,g	0 mm		mm		Distance of load application z,g	0	0 1		
Mono-symmetry constant beta,y 0 m		mm		Mono-symmetry constant beta,y	0		mm		
Mono-symmetry constant z,j	0	1	mm		Mono-symmetry constant z,j	0		mm	

And for beam B3, 6 LTB restraints are inputted, so no LTB calculation will be executed: If $\bar{\lambda}_{LT} \leq \bar{\lambda}_{LT,0}$ or for $\frac{M_{Ed}}{M_{cr}} \leq \bar{\lambda}_{LT,0}^2$ lateral torsional buckling effects may be ignored. With: $\bar{\lambda}_{LT,0} = 0,4$ So for beam B3 the following LTB check is displayed:

Lateral Torsional Buckling check


According to EN 1993-1-1 article 6.3.2.1 & 6.3.2.3 and formula (6.54)

LTB parameters		
Method for LTB curve	Alternative case	
Cross-section plastic modulus Wpl,y	1,7020e-03	m³
Elastic critical moment Mcr	4043,43	kNm
Relative slenderness Lambda, rel, LT	0,31	
Limit slenderness Lambda, rel, LT, 0	0.40	

Note: The slenderness or bending moment is such that Lateral Torsional Buckling effects may be ignored according to EN 1993-1-1 article 6.3.2.2(4).

Mcr parameters		
LTB length L	1,400	m
Influence of load position	no influence	
Correction factor k	1,00	
Correction factor kw	1,00	
LTB moment factor C1	1,01	
LTB moment factor C2	0,02	
LTB moment factor C3	1,00	
Shear center distance d,z	0	mm
Distance of load application z,g	0	mm
Mono-symmetry constant beta,y	0	mm
Mono-symmetry constant z,j	0	mm

When looking at load case LC2, the top side of the beam will be under tension, so SCIA Engineer will not take into account the effects of the LTB Restraints:

Calulation of Mcr for general sections

For the **other supported sections** as defined above, the elastic critical moment for Lateral Torsional Buckling M_{cr} is given by:

$$\begin{split} M_{cr} &= C_1 \frac{\pi^2 E I_z}{(k_{LT} \cdot L)^2} \sqrt{\frac{I_w}{I_z} + \frac{(k_{LT} \cdot L)^2 G I_t}{\pi^2 E I_z}} \\ & \text{with} \qquad \mathsf{E} \qquad \text{the modulus of elasticity} \\ & \mathsf{G} \qquad \text{the shear modulus} \\ & k_{LT} \cdot L \qquad \text{the lateral torsional buckling length of the beam between points} \\ & \text{which have lateral restraint (= I_{LTB}).} \\ & \text{Iw} \qquad \text{the warping constant} \\ & \text{It} \qquad \text{the moment of inertia about the minor axis} \end{split}$$

Calulation of Mcr for channel sections

When a channel section is loaded, additional torsion appears due to the eccentricity of the shear centre relative to the centroid of the cross section. For that reason, the value of Mcr has to be adapted.

In order to account for this additional torsion effect, the following procedure can be used where λ_{EXTRA} is calculated.

Modified design rule for LTB of Channel sections

In case this setting is activated within the Steel Setup, the reduction factor for Lateral-Torsional Buckling of Channel sections is determined according to Ref.[22].

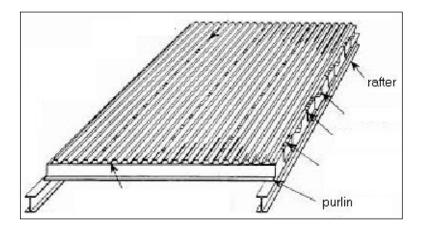
More specifically the calculation is done as follows:

Reduction factor:
$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \lambda_{EXTRA}^2}}$$

Where:

 $\Phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\lambda_{EXTRA} - 0.2 \right) + \lambda_{EXTRA}^2 \right] \rightarrow \text{ curve A for channel sections, therefore } 0.21$

$$\lambda_{EXTRA} = \lambda_{IT} + \lambda_{T}$$
$$\lambda_{IT} = \sqrt{\frac{M_{PTT}}{M_{OTTY}}}$$


$\lambda_T = 1.0 - \lambda_{LT}$	if	$0.5 \leq \lambda_{LT} < 0.80$
$\lambda_T = 0.43 - 0.29 \lambda_{17}$	ij	$0.80 \leq \lambda_{ir} < 1.5$
$\lambda_T = 0$	if	$\hat{\lambda}_{27} > 1.5$

This Modified design rule is applied only in case the following conditions are met:

- The section concerns a Channel section (Form Code 5)
- The General Case is used for LTB (Not the Rolled and Equivalent Welded Case)
- 15 <= Lltb/h <= 40 (with Lltb the LTB length and h the cross-section height)

Diaphragms

When diaphragms (steel sheeting) are used, the torsional constant It is adapted for symmetric or asymmetric I sections, channel sections, Z sections, cold formed U, C and Z sections.

A diaphragm can be inputted in SCIA Engineer via "Steel -> Beams -> Member Check data -> Diaphragms":

1	Diaphragr	n	
\oplus \Box \Box \frown	Name	D1	
	Diaphragms LIB	E160/1.50	·
	Position z	+ z	-
	k	1 and 2 spans	-
	Diaphragm position	Positive	-
	Bolt position	Top flange	*
-z 🕴 👔 🗸 x1 x2	Bolt pitch	br	•
\sim	Lf - frame distance [m]	3,000	
$\frac{br_{+}}{2br_{+}}$	Ld - diaphragm length [m]	1,000	
	Geometry		
	Coord. definition	Rela	-
	Position x1	0,000	
	Position x2	1,000	
Lf	Origin	From start	-
			OK Cancel

The settings for the diaphragm are:

Diaphragms LIB	With this option the user can choose between diaphragms of the library of SCIA Engineer or input his own diaphragm.
Position z	A diaphragm is only taken into account at the compression side of the beam for the LTB check.
k	The value of coefficient k depends on the number of spans of the diaphragm:
	k = 2 for 1 or 2 spans,
	k = 4 for 3 or more spans.
Diaphragm position	The position of the diaphragm may be either positive or negative.
	Positive means that the diaphragm is assembled in a way so that the width is greater at the top side.
	Negative means that the diaphragm is assembled in a way so that the width is greater at the bottom side.

Bolt position	Bolts may be located either at the top or bottom side of the diaphragm.
Bold pitch	Bolts may be either:
	- in every rib (i.e. "br"),
	- in each second rib (i.e. "2 br").
Frame distance	The distance of frames
Length	The length of the diaphragm (shear field.)

The diaphragm will only have an influence on the torsional constant I_t and will be taken into account in the calculation for M_{cr} for the Lateral Torsional Buckling check.

The torsional constant It is adapted with the stiffness of the diaphragms.

The value for I_t equals the previous value for I_t (thus I_t of the beam) plus a supplementary stiffness calculated with the values of the diaphragm:

$$I_{t,id} = I_t + vorh C_{\vartheta} \frac{l^2}{\pi^2 G}$$

Where:

$$\frac{1}{\operatorname{vorh} C_{\vartheta}} = \frac{1}{C_{\vartheta M,k}} + \frac{1}{C_{\vartheta A,k}} + \frac{1}{C_{\vartheta P,k}}$$

$$C_{\vartheta M,k} = k \frac{E I_{eff}}{s}$$

$$C_{\vartheta A,k} = C_{100} \left[\frac{b_a}{100}\right]^2 \quad if \ b_a \le 125$$

$$C_{\vartheta A,k} = 1.25 \ C_{100} \left[\frac{b_a}{100}\right] \quad if \ 125 < b_a < 200$$

$$C_{\vartheta P,k} \approx \frac{3 \cdot E \cdot I_s}{(h-t)}$$

$$I_s = \frac{s^3}{12}$$

with

l G	the LTB length the shear modulus
vorh	the actual rotational stiffness of diaphragm
C_{θ}	
C _{0M,}	the rotational stiffness of the diaphragm
k	the exterior of the second time between the discharge and
$\boldsymbol{C}_{\boldsymbol{\theta}\boldsymbol{A},\boldsymbol{k}}$	the rotational stiffness of the connection between the diaphragm and the beam
0	the rotational stiffness due to the distortion of the beam
C _{0P,k}	
k	numerical coefficient
	= 2 for single or two spans of the diaphragm
	= 4 for 3 or more spans of the diaphragm
El _{eff}	bending stiffness of per unit width of the diaphragm
S	spacing of the beam
b _a	the width of the beam flange (in mm)
C ₁₀₀	rotation coefficient - see table
h	beam height
t	thickness beam flange
S	thickness beam web

Example: Diaphragm.esa

Consider member B1:

- LTB Length = 7 m
- \circ C1 = 1.13, C2= 0.45, C3 = 0.53
- Mcr = 281 kNm

Consider member B2

- \circ It, id = 1840207 mm⁴
- LTB Length = 7 m
- C1 = 1.13, C2= 0.45, C3 = 0.53
- Mcr = 405 kNm

The results for the calculation of the diaphragm are shown in the preview of the steel check just before the Section check:

Diaphragm

According to EN 1993-1-1 article BB.2.1 and formula (BB.2)

Parameters		
Diaphragm name	E160/1.50	
Moment of inertia per length I	0,00	m⁴/m
Position z	+ Z	
Diaphragm position	negative	
Bolt position	top flange	
Bolt pitch	br	
Frame distance Lf	3,000	m
Diaphragm length Ld	3,000	m
Diaphragm factor K1-	0,167	m/kN
Diaphragm factor K2-	15,700	m²/kN
Numerical coefficient k	4,00	

Stiffness		
Actual stiffness S	5555,21	kN
Required stiffness Serf	42802,77	kN
S < Serf	inadequately braced	
Diaphragm on side	compression side	
Rotational stiffness (Diaphragm) COM,k	2637,60	kNm/m
Rotational stiffness (Beam distortion) COP,k	100,15	kNm/m
Rotational stiffness (Connection) C0A,k	23,75	kNm/m
Rotational coefficient C100	10,00	kNm/m
Rotational stiffness vorhC,k	19,06	kNm/m
LTB length L	7,000	m
Cross-section torsional constant It	6,6870e-07	m⁴
Additional torsional constant It,add	1,1715e-06	m⁴
Adapted torsional constant It,id	1,8402e-06	m⁴

The results for the Lateral Torsional Buckling check are:

Lateral Torsional Buckling check

According to EN 1993-1-1 article 6.3.2.1 & 6.3.2.2 and formula (6.54)

LTB parameters				
Method for LTB curve		General a	ase	
Cross-section plastic modulus Wpl,	,у	1,7020e-0	3	m³
Elastic critical moment Mcr		405,43		kNr
Relative slenderness Lambda, rel, L1	Г	0,99		
Limit slenderness Lambda, rel, LT, 0		0,20		
LTB curve		b		
Imperfection Alpha,LT		0,34		
Reduction factor Chi,LT		0,60		
Design buckling resistance Mb,Rd		240,51		kNr
Unity check		1,02		-
Mcr parameters				
LTB length L	7,0	000	m	
Influence of load position	no	influence		
Correction factor k	1,0	00		
Correction factor kw	1,0	1,00		
LTB moment factor C1	1,1	13		
LTB moment factor C2	0,4	15		
LTB moment factor C3	0,5	53		
Shear center distance d,z	0		mm	۱
Distance of load application z,g	0		mm	۱
Mono-symmetry constant beta,y	0		mm	۱
Mono-symmetry constant z,j	0		mm	۱

Note: C parameters are determined according to ECCS 119 2006 / Galea 2002.

Lateral Torsional Buckling using LTBII – Not in Concept Edition

This option has been inputted in SCIA Engineer as a separate module and it is not included in an edition. The necessary module for this option is **esasd.14**.

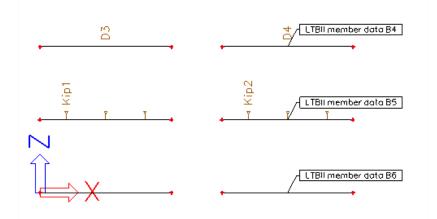
For a detailed Lateral Torsional Buckling analysis, a link was made to the Friedrich + Lochner LTBII calculation program.

LTBII is the abbreviation of "Lateral Torsional Buckling with 2nd order calculation".

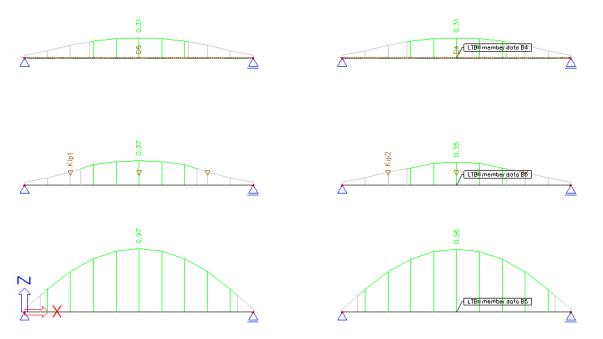
The Frilo LTBII solver can be used in 2 separate ways:

- 1. Calculation of Mcr through eigenvalue solution
- 2. 2nd Order calculation including torsional and warping effects

For both methods, the member under consideration is sent to the Frilo LTBII solver and the respective results are sent back to SCIA Engineer.

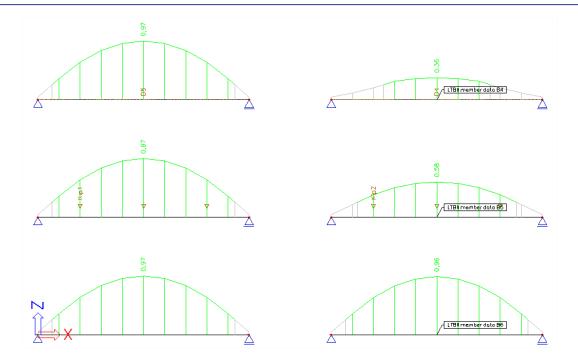

The single element is taken out of the structure and considered as a single beam, with:

- Appropriate end conditions for torsion and warping
- o End and begin forces
- o Loadings
- o Intermediate restraints (diaphragms, LTB restraints)


To use this option in SCIA Engineer the functionality "LTB 2nd order" should be activated. And afterward with the option "Steel -> Beams -> Member check data -> LTB II member data" the user can input LTB-data on a beam.

Example: LTBII.esa

In this example the same beam will be calculated with LTBII data on it and without in three configurations:


When looking at the check for LC1 there is not a big difference between the beams with or without the LTBII data:

In SCIA Engineer the calculation of a diaphragm is only calculation in one direction.

In Frilo the rigidity of the diaphragm against rotation and translation is taken into account, which results in a higher stiffness of the diaphragm and thus a better unity check.

When looking at the results for Load Case LC2, the direction of the inputted line load is changed. The upper side of the beams is under tension for this load case. SCIA Engineer does not take into account LTB restraints or a diaphragm on the tension side. But Frilo can take this also into account. There will be an augmentation of the rigidity:

Also in the detailed output this calculation is indicated:

Lateral Torsional Buckling check

According to EN 1993-1-1 article 6.3.2.1 & 6.3.2.3 and formula (6.54)

LTB parameters		
Method for LTB curve	Alternative case	
Cross-section plastic modulus Wpl,y	1,6640e-04	m ³
Elastic critical moment Mcr	27,05	kNm
Relative slenderness Lambda, rel, LT	1,30	
Limit slenderness Lambda, rel, LT, 0	0,40	
LTB curve	b	
Imperfection Alpha,LT	0,34	
LTB factor Beta	0,75	
Reduction factor Chi,LT	0,52	
Correction factor kc	0,94	
Correction factor f	0,99	
Modified reduction factor Chi,LT,mod	0,53	
Design buckling resistance Mb,Rd	24,31	kNm
Unity check	0,58	-

Note: The elastic critical moment Mcr is calculated using the FriLo BTII Solver.

Mcr parameters

LTB length L	7,200	m
--------------	-------	---

Compression and bending check

The compression and bending check for a member will be executed following EN 1993-1-1 art. 6.3.2.

Unless second order analysis is carried out, members which are subjected to combined bending and axial compression should satisfy:

$$\frac{N_{Ed}}{\frac{\chi_{y}N_{Rk}}{\gamma_{M1}}} + k_{yy}\frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT}\frac{M_{y,Rk}}{\gamma_{M1}}} + k_{yz}\frac{M_{z,Ed} + \Delta M_{z,Ed}}{\frac{M_{z,Rk}}{\gamma_{M1}}} \le 1$$
$$\frac{N_{Ed}}{\frac{\chi_{z}N_{Rk}}{\gamma_{M1}}} + k_{zy}\frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT}\frac{M_{y,Rk}}{\gamma_{M1}}} + k_{zz}\frac{M_{z,Ed} + \Delta M_{z,Ed}}{\frac{M_{z,Rk}}{\gamma_{M1}}} \le 1$$

 N_{Ed} , $M_{y,Ed}$, $M_{z,Ed}$ are the design values of the compression force and the **maximum** moments about the y-y and z-z axis along the member respectively.

 χ_{γ} and χ_{z} are the reduction factors due to flexural buckling

 χ_{LT} is the reduction factor due to lateral torsional buckling

Class	1	2	3	4
A _i	Α	А	А	A_{eff}
W _v	$W_{pl,y}$	$W_{pl,y}$	$W_{el,v}$	$W_{eff,y}$
Wz	$W_{pl,z}$	$W_{pl,z}$	$W_{el,z}$	$W_{eff,z}$
$\Delta M_{y,Ed}$	0	0	0	$e_{N,y} N_{Ed}$
$\Delta M_{z,Ed}$	0	0	0	$e_{N,z} N_{Ed}$

The interaction factors \mathbf{k}_{yy} , \mathbf{k}_{yz} , \mathbf{k}_{zy} and \mathbf{k}_{zz} have been derived from EN 1993-1-1 Annex A (alternative method1) or from Annex B (alternative method 2).

The choice between Interaction Method 1 or 2 can be made in SCIA Engineer in the National Annex parameters:

	Steel setup				
 Standard EN Steel Member check Fire resistance Cold Formed Plated structural elements 	Name Steel Member check Bow Imperfections Member Imperfection Partial Safety Factors LTB Curves - General Case LTB Curves - Rolled/Equivalent welded Interaction Method Values Fire resistance Cold Formed Plated structural elements	Standard EN EN 1993-1-1 EN 1993-1-1: 5.3.2(3) b) EN 1993-1-1: 5.3.4(3) EN 1993-1-1: 6.1(1) EN 1993-1-1: 6.3.2.2 EN 1993-1-1: 6.3.2.3(1) EN 1993-1-1: 6.3.2.3(1) EN 1993-1-1: 6.3.3(5) Annex A (alternative method 1) Annex B (alternative method 2) EN 1993-1-5			

Example: Industrial Hall.esa

Consider column B28 (for combination CO1-ULS).

In SCIA Engineer first all calculated formulas, in this example following EN 1993 Annex 1, are given:

Bending and axial compression check

According to EN 1993-1-1 article 6.3.3 and formula (6.61),(6.62)

Bending and axial compression check p	arameters	
Interaction method	alternative method 1	
Cross-section effective area Aeff	1,5269e+04	mm ²
Cross-section effective modulus Weff,y	4,1630e+06	mm ³
Cross-section effective modulus Weff,z	3,9265e+05	mm ³
Design compression force N,Ed	159,86	kN
Design bending moment (maximum) My,Ed	-697,64	kNm
Design bending moment (maximum) Mz,Ed	-0,24	kNm
Additional moment Delta My,Ed	0,00	kNm
Additional moment Delta Mz,Ed	0,00	kNm
Characteristic compression resistance N,Rk	3588,20	kN
Characteristic moment resistance My,Rk	978,31	kNm
Characteristic moment resistance Mz,Rk	92,27	kNm
Reduction factor Chi,y	0,83	
Reduction factor Chi,z	0,45	
Reduction factor Chi,LT	0,75	
Interaction factor k,yy	0,98	
Interaction factor k,yz	0,84	
Interaction factor k,zy	0,94	
Interaction factor k,zz	0,81	

Maximum moment My,Ed is derived from beam B28 position 6,900 m. Maximum moment Mz,Ed is derived from beam B28 position 6,900 m.

Interaction method 1 parameters		
Critical Euler load N,cr,y	6596,08	kN
Critical Euler load N,cr,z	2293,84	kN
Elastic critical load N,cr,T	4395,48	kN
Cross-section effective modulus Weff,y	4,1630e+06	mm ³
Second moment of area Iy	1,5990e+09	mm⁴
Second moment of area Iz	5,1660e+07	mm⁴
Torsional constant It	1,3710e+06	mm⁴
Method for equivalent moment factor C,my,0	Table A.2 Line 1 (Linear)	
Ratio of end moments Psi,y	0,00	
Equivalent moment factor C,my,0	0,79	
Method for equivalent moment factor C,mz,0	Table A.2 Line 1 (Linear)	
Ratio of end moments Psi,z	0,00	
Equivalent moment factor C,mz,0	0,78	
Factor mu,y	1,00	
Factor mu,z	0,96	
Factor epsilon,y	16,01	
Factor a,LT	1,00	
Critical moment for uniform bending Mar,0	965,61	kNm
Relative slenderness Lambda, rel, 0	1,01	
Limit relative slenderness Lambda, rel, 0, lim	0,26	
Equivalent moment factor C,my	0,96	
Equivalent moment factor C,mz	0,78	
Equivalent moment factor C,mLT	1,00	

And afterwards the check is given as two times a sum of three values as in formulas (6.61) and (6.62) of the EN 1993-1-1:

$$\frac{\frac{N_{Ed}}{\chi_{y}N_{Rk}}}{\frac{N_{Ed}}{\gamma_{M1}}} + k_{yy}\frac{\frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT}\frac{M_{y,Rk}}{\gamma_{M1}}}}{\chi_{LT}\frac{M_{y,Rk}}{\gamma_{M1}}} + k_{yz}\frac{\frac{M_{z,Ed} + \Delta M_{z,Ed}}{\frac{M_{z,Rk}}{\gamma_{M1}}} \le 1$$
$$\frac{\frac{N_{Ed}}{\chi_{Z}N_{Rk}}}{\chi_{M1}} + k_{zy}\frac{\frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT}\frac{M_{y,Rk}}{\gamma_{M1}}}}{\chi_{LT}\frac{M_{y,Rk}}{\gamma_{M1}}} + k_{zz}\frac{\frac{M_{z,Ed} + \Delta M_{z,Ed}}{\frac{M_{z,Rk}}{\gamma_{M1}}} \le 1$$

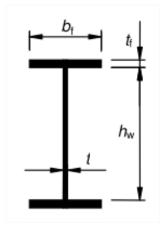
In SCIA Engineer:

Unity check (6.61) = 0,05 + 0,93 + 0,00 = 0,98 -Unity check (6.62) = 0,10 + 0,90 + 0,00 = 1,00 -

Shear buckling check – EN 1993-1-5

General

The shear buckling check will check if the web of the cross section can locally buckle. This check is not included in EN 1993-1-1, but in EN 1993-1-5: Design of steel structures – Part 1-5: Plated structural elements.


First it will be checked if the slenderness is lesser than a certain value, because for webs with a small slenderness, this check should not be executed.

Plates with h_w/t greater than $72\varepsilon/\eta$ for an unstiffened web should be checked for resistance to shear.

With:

$$\epsilon = \sqrt{\frac{235}{f_{y}[N/mm^{2}]}}$$

 η will be defined in the National Annex. The value $\eta = 1.20$ is recommended for steel grades up to and including S460. For higher steel grades $\eta = 1.00$ is recommended.

If the slenderness is higher than the minimum one, the shear buckling check is executed following EN 1993-1-5, formula (5.10) (this is a check on the shear force) and formula (7.1) (which is the check on the interaction between shear force, bending moment and axial force). Both formulas are checked in SCIA Engineer.

Example: Industrial Hall.esa

Consider Beam B50

This is an IPE 160 profile: $h_w = 160 - 2 \times 7.40 = 145.2 \text{ mm}$. And t = 5 mm

 \Rightarrow h_w / t = 29.04

This should be checked with the value: $72\epsilon/\eta = 72 \times 1.00 / 1.2 = 60$

 \Rightarrow h_w / t < 72 ε/η

 \Rightarrow The shear buckling check does not have to be executed.

This is also indicated in SCIA Engineer:

Shear Buckling check

```
According to EN 1993-1-5 article 5 & 7.1 and formula (5.10) & (7.1)
```

Shear Buckling parameters				
Buckling field length a	6,000	m		
Web	unstiffened			
Web height hw	145,20	mm		
Web thickness t	5,00	mm		
Material coefficient epsilon	1,00			
Shear correction factor Eta	1,20			

Shear Buckling verificationWeb slenderness hw/t29,04Web slenderness limit60,00

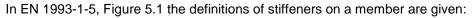
Note: The web slenderness is such that Shear Buckling effects may be ignored according to EN 1993-1-5 article 5.1(2).

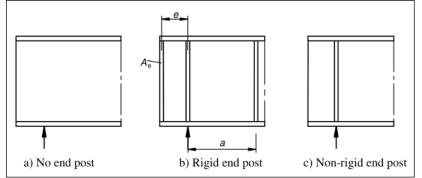
Consider Beam B28 (for combination CO1-ULS):

This is an IPE750x137 profile: $h_w = 753 - 2 \times 17 = 719$ mm. And t = 11.5 mm

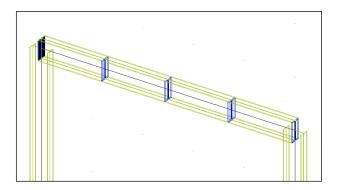
 \Rightarrow h_w / t = 62.52

This should be checked with the value: $72\varepsilon/\eta = 72 \times 1.00 / 1.2 = 60$


- \Rightarrow h_w / t > 72 ε/η
- \Rightarrow The shear buckling check has to be executed.

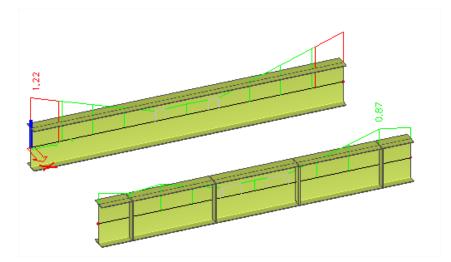

Shear Buckling paramete	rs			
Buckling field length a	6,900)	m	
Web	unstif	fened		
End post	non-ri	igid		
Web height hw	719,0	0	mr	n
Web thickness t	11,50		mr	n
Yield strength fyw	235,0)	MP	Pa
Flange width bf	263,0	0	mr	n
Flange thickness tf	17,00		mr	n
Yield strength fyf	235,0		MF	Pa
Material coefficient epsilon	1,00			
Shear correction factor Eta	1,20			
Shear Buckling verification				
Web slenderness hw/t		62,52		
Web slenderness limit		60,00		
Plate slenderness lambda,w		0,72		
Reduction factor chi,w		1,15		
Contribution of the web Vbw,Rd		1286,7	5	kN
Capacity of the flange Mf,Rd		714,47		kNm
Flange factor c		1,866		m
Contribution of the flange Vbf,Rd		9,32		kN
Maximum resistance Vb,Rd,lin	mit	1346,2	2	kN
Resistance Vb,Rd		1296,0	7	kN
Plastic resistance Mpl,Rd		1143,2	8	kNm
Shear ratio eta,3,bar		0,08		

Unity check (5.10) = 0,08 -


Note: The interaction between Bending and Shear Buckling does not need to be verified because the shear ratio does not exceed 0.5.

Stiffners

Those stiffeners will influence the total length for shear buckling. Also in SCIA Engineer those stiffeners can be inputted on a beam and will only have influence on the shear buckling check.

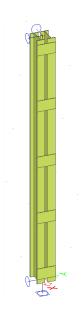

Those stiffeners can be inputted via "Steel -> Beams -> Member check data -> Stiffeners".

The stiffeners define the field dimensions (a,d) which are only relevant for the shear buckling check. When no stiffeners are defined, the value for 'a' is taken equal to the member length.

Example: Stiffeners.esa

In this example 2 identical beams are inputted. B1 without stiffeners and B2 with stiffeners:

Let's now compare the shear buckling check with and without stiffeners:

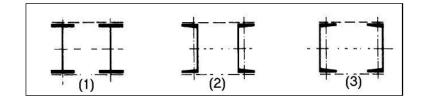


Shear Buckling parameter	ers		
Buckling field length a	6,0	00	m
Web	uns	tiffened	
End post	nor	-rigid	
Web height hw	782	<u> </u>	mm
Web thickness t	5,0	0	mm
Yield strength fyw	235	i,0	MPa
Flange width bf	275	5,00	mm
Flange thickness tf	9,0	-	mm
Yield strength fyf	235	5,0	MPa
Material coefficient epsilon	1,0	0	
Shear correction factor Eta	0		
Shear Buckling verification Web slenderness hw/t	n	156,40	1
Web slenderness limit	60,00	+	
Plate slenderness lambda,w	1,81	+	
Reduction factor chi,w	0.46		
Contribution of the web Vbw,	243,24	kN	
Capacity of the flange Mf,Rd	460,07	kNm	
Flange factor c		1,570	m
Contribution of the flange Vbf	,Rd	1,92	kN
Maximum resistance Vb,Rd,limit 63			kN
Resistance Vb,Rd 245			kN
Plastic resistance Mpl,Rd	693,57	kNm	
Shear ratio eta,3,bar 1,23			
Moment resistance MR,eff	569,96	kNm	
Moment ratio eta,1,bar	0,43		
Moment ratio limit eta,1,bar,li	0.66	1	

With stiffeners Shear buckling check:

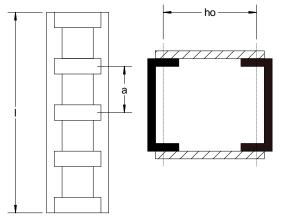
Buckling field length a	1,600)	m	
		stiffened		
End post	non-r	igid		
Web height hw	782,0)0	mm	1
Web thickness t	5,00		mm	1
Yield strength fyw	235,0)	MPa	3
Flange width bf	275,0)0	mm	1
Flange thickness tf	9,00		mm	1
Yield strength fyf	235,0)	MPa	a
Material coefficient epsilon	1,00			
Shear correction factor Eta	1,20			
Shear Buckling verification	on			
Shear buckling coefficient k,		6,30		
Web slenderness hw/t			40	
Web slenderness limit			2	
Plate slenderness lambda,w		1,67		
Reduction factor chi,w		0,50		
Contribution of the web Vbw,Rd		Rd 264,19		kN
Capacity of the flange Mf,Rd		460,07		kNm
Flange factor c		0,419		m
Contribution of the flange Vbf,Rd		11,38		kN
Maximum resistance Vb,Rd,limit		t 636,60		kΝ
Resistance Vb,Rd		275,	57	kN
Plastic resistance Mpl,Rd			57	kNm
Shear ratio eta,3,bar 0				
Moment resistance MR,eff			96	kNm
		0,20		
Moment ratio eta,1,bar Moment ratio limit eta,1,bar,				

ULS Check for Battened compression members



This check can be executed following the EC-ENV and EC-EN 11993-1-1 art.6.4

The following section pairs are supported as battened compression member :

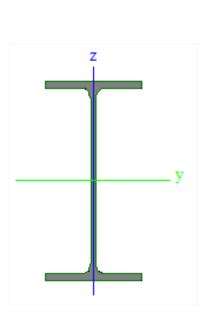

(3) 2Uc

Two links (battens) are used.

The following additional checks are performed:

- buckling resistance check around weak axis of single chord with $N_{f,Sd}$
- section check of single chord, using internal forces
- section check of single batten, using the internal forces

Example – manual calculation of a battened compression member EC_EN_Battened_Compression_Members_I.esa


Consider member B1

On this beam, only a compression force of 500kN is applied

Properties of the batten:

Division	4
Distance from begin x [m]	0,200
Distance from end x' [m]	0,200
Width of link w [m]	0,220
Thickness t [mm]	7,00
On begin	
On end	

Properties of the IPE 330 profile

Ay [mm^2] 3,2283e+03 Az [mm^2] 2,3645e+03 AL [m^2/m] 1,2540e+00 AD [m^2/m] 1,2540e+00 cYUCS [mm] 80,00 cZUCS [mm] 165,00 α[deg] 0,00 ly [mm^4] 1,1770e+08 lz [mm^4] 7,8810e+06 iy [mm] 35,48 Wely [mm^3] 7,1310e+05 Welz [mm^3] 9,8520e+04 Wply [mm^3] 8,030e+05 Wplz [mm3] 1,5370e+05 Mply- [Nmm] 0,00 Mply- [Nmm] 0,00 Mply- [Nmm] 0,00 dy [mm] 0,00 <td< th=""><th>A [mm^2]</th><th>6,2600e+03</th></td<>	A [mm^2]	6,2600e+03
AL [m^2/m] 1,2540ε+00 AD [m^2/m] 1,2540ε+00 cYUCS [mm] 80,00 cZUCS [mm] 165,00 α [deg] 0,00 ly [mm^4] 1,1770ε+08 lz [mm] 35,48 Wely [mm^3] 7,1310ε+05 Welz [mm^3] 9,8520ε+04 Wply [mm^3] 8,0430ε+05 Wplz [mm3] 0,00 Mply+ [Nmm] 0,00 Mply- [Nmm] 0,00 Mplz- [Nmm] 0,00 dz [mm^4] 2,8150ε+05 lk [mm^4] 2,8150ε+05 lk [mm^4] 2,8150ε+05 lk [mm^4] 1,9910ε+11 β y [mm] 0,00	Ay [mm^2]	3,2283e+03
AD [m^2/m] 1,2540ε+00 cYUCS [mm] 80,00 cZUCS [mm] 165,00 α [deg] 0,00 ly [mm^4] 1,1770ε+08 lz [mm^4] 7,8810ε+06 iy [mm] 137,12 iz [mm^3] 35,48 Wely [mm^3] 7,1310ε+05 Welz [mm^3] 9,8520ε+04 Wply [mm^3] 8,0430ε+05 Wplz [mm^3] 0,00 Mply+ [Nmm] 0,00 Mply- [Nmm] 0,00 Mplz- [Nmm] 0,00 dy [mm] 0,00 t[mm4] 2,8150ε+05 w[mm4] 2,8150ε+05 w[mm4] 1,9910ε+11 β y [mm] 0,00	Az [mm^2]	2,3645e+03
cYUCS [mm] 80,00 cZUCS [mm] 165,00 α [deg] 0,00 ly [mm^4] 1,1770±408 iz [mm^4] 7,8810±406 iy [mm] 137,12 iz [mm] 35,48 Wely [mm^3] 7,1310±405 Welz [mm^3] 9,8520±404 Wply [mm^3] 8,0430±405 Wplz [mm^3] 1,5370±405 Mply+ [Nmm] 0,00 Mply+ [Nmm] 0,00 Mply- [Nmm] 0,00 Mplz- [Nmm] 0,00 Mplz- [Nmm] 0,00 tj[mm^4] 2,8150±405 ik [mm] 0,00 dz [mm] 0,00	AL [m^2/m]	1,2540e+00
cZUCS [mm] 165,00 cZUCS [mm] 165,00 ig [deg] 0,00 ly [mm^4] 1,1770±08 iz [mm/4] 7,8810±06 iy [mm] 137,12 iz [mm] 35,48 Wely [mm^3] 7,1310±05 Welz [mm^3] 9,8520±04 Wply [mm^3] 8,0430±05 Wplz [mm^3] 1,5370±05 Mply+ [Nmm] 0,00 Mply+ [Nmm] 0,00 Mply- [Nmm] 0,00 Mplz- [Nmm] 0,00 dy [mm] 0,00 tg [mm] 0,00 tg [mm] 0,00 dy [mm] 0,00 tg [mm] 0,00 dy [mm] 0,00 tg [mm] 0,0	AD [m^2/m]	1,2540e+00
a (deg) 0,00 ly [mm^4] 1,1770±08 lz [mm^4] 7,8810±06 iy [mm] 137,12 iz [mm] 35,48 Wely [mm^3] 7,1310±05 Welz [mm^3] 9,8520±04 Wply [mm^3] 8,0430±05 Wplz [mm^3] 1,5370±05 Mply+ [Nmm] 0,00 Mply- [Nmm] 0,00 Mplz+ [Nmm] 0,00 Mplz- [Nmm] 0,00 tg [mm] 0,00	cYUCS [mm]	80,00
k1(mm) ⁴] 1,1770e+08 lz [mm^4] 1,1770e+08 lz [mm^4] 7,8810e+06 iy [mm] 137,12 iz [mm] 35,48 Wely [mm^3] 7,1310e+05 Welz [mm^3] 9,8520e+04 Wply [mm^3] 8,0430e+05 Wplz [mm^3] 1,5370e+05 Mply+ [Nmm] 0,00 Mply- [Nmm] 0,00 Mplz+ [Nmm] 0,00 Mplz- [Nmm] 0,00 dy [mm] 0,00 ti [mm^4] 2,8150e+05 lw [mm^6] 1,9910e+11 β y [mm] 0,00	cZUCS [mm]	165,00
j [mm,4] 7,8810ε+06 iy [mm] 137,12 iz [mm] 35,48 Wely [mm^3] 7,1310ε+05 Welz [mm^3] 9,8520ε+04 Wply [mm^3] 8,0430ε+05 Wplz [mm^3] 1,5370ε+05 Mply+ [Nmm] 0,00 Mply- [Nmm] 0,00 Mplz+ [Nmm] 0,00 Mplz- [Nmm] 0,00 dy [mm] 0,00 t [mm/4] 2,8150ε+05 lw [mm^6] 1,9910ε+11 β y [mm] 0,00	α [deg]	0,00
j [mm] 137,12 iz [mm] 35,48 Wely [mm^3] 7,1310±+05 Welz [mm^3] 9,8520±+04 Wply [mm^3] 8,0430±+05 Wplz [mm^3] 1,5370±+05 Mply+ [Nmm] 0,00 Mply- [Nmm] 0,00 Mplz+ [Nmm] 0,00 Mplz- [Nmm] 0,00 dy [mm] 0,00 t [mm^4] 2,8150±+05 lw [mm^6] 1,9910±+11 β y [mm] 0,00	ly [mm^4]	1,1770e+08
j, ka iz [mm] 35,48 Wely [mm^3] 7,1310±+05 Welz [mm^3] 9,8520±+04 Wply [mm^3] 8,0430±+05 Wplz [mm^3] 1,5370±+05 Mply+ [Nmm] 0,00 Mply- [Nmm] 0,00 Mplz+ [Nmm] 0,00 Mplz- [Nmm] 0,00 dy [mm] 0,00 tg [mm] 0,00	lz [mm^4]	7,8810e+06
γely [mm^3] 7,1310±405 Wely [mm^3] 9,8520±44 Wply [mm^3] 8,0430±405 Wply [mm^3] 1,5370±405 Mply+ [Nmm] 0,00 Mply- [Nmm] 0,00 Mplz+ [Nmm] 0,00 Mplz- [Nmm] 0,00 dy [mm] 0,00 dy [mm] 0,00 t [mm^4] 2,8150±405 lw [mm^6] 1,9910±111 β y [mm] 0,00	iy [mm]	137,12
Welz [mm^3] 9,8520±+04 Welz [mm^3] 8,0430±+05 Wplz [mm^3] 1,5370±+05 Mply+ [Nmm] 0,00 Mply- [Nmm] 0,00 Mplz- [Nmm] 0,00 Mplz- [Nmm] 0,00 dy [mm] 0,00 dy [mm] 0,00 t [mm^4] 2,8150±+05 lw [mm^6] 1,9910±+11 β y [mm] 0,00	iz [mm]	35,48
Wply [mm^3] 8,0430e+05 Wplz [mm^3] 1,5370e+05 Mply+ [Nmm] 0,00 Mply- [Nmm] 0,00 Mplz- [Nmm] 0,00 Mplz- [Nmm] 0,00 dy [mm] 0,00 dy [mm] 0,00 dz [mm] 0,00 ti [mm^4] 2,8150e+05 lw [mm^6] 1,9910e+11 β y [mm] 0,00	Wely [mm^3]	7,1310e+05
Wpiz (mm^3) 1,5370e+05 Mply+ [Nmm] 0,00 Mply- [Nmm] 1000,00 Mplz+ [Nmm] 0,00 Mplz- [Nmm] 0,00 dy [mm] 0,00 dz [mm] 0,00 t [mm^4] 2,8150e+05 lw [mm^6] 1,9910e+11 β y [mm] 0,00	Welz [mm^3]	9,8520e+04
Mply+ [Nmm] 0,00 Mply- [Nmm] 1000,00 Mplz+ [Nmm] 0,00 Mplz- [Nmm] 0,00 dy [mm] 0,00 dz [mm] 0,00 tr [mm^4] 2,8150±+05 lw [mm^6] 1,9910±+11 β y [mm] 0,00	Wply [mm^3]	8,0430e+05
Mply- [Nmm] 1000,00 Mplz+ [Nmm] 0,00 Mplz- [Nmm] 0,00 dy [mm] 0,00 dz [mm] 0,00 tt [mm^4] 2,8150e+05 lw [mm^6] 1,9910e+11 β y [mm] 0,00	Wplz [mm^3]	1,5370e+05
Mplz+ [Nmm] 0,00 Mplz- [Nmm] 0,00 dy [mm] 0,00 dz [mm] 0,00 tk [mm^4] 2,8150e+05 lw [mm^6] 1,9910e+11 β y [mm] 0,00	Mply+ [Nmm]	0,00
Mpiz- [Nmm] 0,00 dy [mm] 0,00 dz [mm] 0,00 tz [mm/4] 2,8150e+05 lw [mm^6] 1,9910e+11 β y [mm] 0,00	Mply- [Nmm]	1000,00
dy [mm] 0,00 dz [mm] 0,00 lt [mm^4] 2,8150e+05 lw [mm^6] 1,9910e+11 β y [mm] 0,00	Mplz+ [Nmm]	0,00
dz [mm] 0,00 lt [mm^4] 2,8150e+05 lw [mm^6] 1,9910e+11 β y [mm] 0,00	Mplz- [Nmm]	0,00
it [mm^4] 2,8150e+05 lw [mm^6] 1,9910e+11 β y [mm] 0,00	dy [mm]	0,00
Iw [mm^6] 1,9910e+11 β y [mm] 0,00	dz [mm]	0,00
β y [mm] 0,00	lt [mm^4]	2,8150e+05
	lw [mm^6]	1,9910e+11
β z [mm] 0,00	β y [mm]	0,00
	β z [mm]	0,00

Values in SCIA Engineer:

Check for battened compression member

Table of values			
	4600.00	mm	
а	1150.00	mm	
h0	210.00	mm	
Ich	7.8810e+06	mm⁴	
Lambda	41.50		
Mu	1.00		
Ach	6.2600e+03	mm ²	
Ieff	1.5380e+08	mm⁴	
Sv	24384.44	kN	
e0	9.20	mm	
MEd,I	0.00	kNm	
MEd	4.86	kNm	
VEd	3.32	kN	

Manual calculation of those values:

I length = Member length – (distance from begin) – (distance from end)

= 5000mm - 200mm - 200mm

= 4600mm

- a distance between battens = I / (number of divisions) = 4600mm / 4 = 1150 mm
- h0 distance between centroids of chords = 210mm
- Ich Iz of the IPE330 profile

Ach area if one I-profile, so A of IPE 330

Lambda = I / i0 = 4600mm / 110,833 mm = 41.5

with $l_1 = 0.5 \cdot h0^2 \cdot Ach + 2 \cdot Ich$ $= 0.5 \cdot (210mm)^2 \cdot (6260mm^2) + 2 \cdot (7881000mm^4) = 1.538 \times 10^8 mm^4$ $i0 = \sqrt{\frac{l_1}{2 \cdot Ach}} = \sqrt{\frac{1.538 \, x \, 10^8 mm^4}{2 \cdot 6260 mm^2}} = 110,833 mm$ Mu μ: = 0 if Lambda > 150 $= 2 - \frac{Lambda}{75}$ if 75 < Lambda < 150 = 1.0 if Lambda < 75 And Lambda = 41.5 < 75 in this example => μ = 1.00 $0.5 \cdot h0^2 \cdot Ach + 2 \cdot \mu \cdot Ich$ leff $= 0.5 \cdot (210mm)^2 \cdot (6260mm^2) + 2 \cdot (1.00) \cdot (7881000mm^4) = 1.538 \times 10^8 mm^4$ $= \frac{24 \cdot E \cdot Ich}{a^2 \cdot \left(1 + \frac{2 \cdot Ich}{n \cdot Ib} \frac{h0}{a}\right)} but Sv \leq \frac{2 \cdot \pi^2 \cdot E \cdot Ich}{a^2}$ Sv With: n = number of planes of battens: n=2 = (tickness batten) x (width of batten)³ / 12 = (7 mm) x (220 mm)³ / 12 lb $= 6,211 \times 10^{6} \text{ mm}^{4}$ $\frac{24 \cdot E \cdot Ich}{a^2 \cdot \left(1 + \frac{2 \cdot Ich}{n \cdot Ib}{a}\right)} = \frac{24 \cdot \left(\frac{210000N}{mm^2}\right) \cdot (7881000mm^4)}{(1150mm)^2 \cdot \left(1 + \frac{2 \cdot (7881000mm^4)}{2 \cdot (6,211 \times 10^6 \text{ mm}^4)} \frac{210mm}{1150mm}\right)} = 2.438 \times 10^4 kN$ And $\frac{2 \cdot \pi^2 \cdot E \cdot Ich}{a^2} = \frac{2 \cdot \pi^2 \cdot \left(\frac{210000N}{mm^2}\right) \cdot (7881000mm^4)}{(1150)^2} = 2.470 \ x \ 10^4 kN$ \Rightarrow $Sv = 2.438 \times 10^4 kN$ = I/500 = 4600mm/500 = 9.2 mm e0

MEd,I Mz in the cross section under consideration = 0 kNm

MEd will be calculated as follows:

If
$$\left(1 - \frac{NEd}{Ncr} - \frac{NEd}{Sv}\right) > 0 => MEd = \frac{NEd \cdot e0 + MEd \bot I}{1 - \frac{NEd}{Ncr} - \frac{NEd}{Sv}}$$

Otherwise: $=> Med = 1 \times 10^{6} \text{ kNm}$

With:

$$N_{cr} = \frac{\pi^{2} \cdot E \cdot Ieff}{L^{2}} = \frac{\pi^{2} \cdot \left(\frac{210000N}{mm^{2}}\right) \cdot (1.538 \times 10^{8} mm^{4})}{(4600 mm)^{2}} = 15064 \ kN$$
$$1 - \frac{500 kN}{15064 kN} - \frac{500 kN}{24700 \ kN} = 0,9466 > 0$$

$$\Rightarrow MEd = \frac{NEd \cdot e0 + MEd_{-1}}{1 - \frac{NEd}{Ncr} - \frac{NEd}{Sv}} = \frac{500kN \cdot 9.2mm + 0kNm}{0.9466} = 4860kNmm = 4,860kNm$$

$$\mathsf{VEd} \qquad = \frac{\pi \cdot MEd}{l} = \frac{\pi \cdot 4860 kNmm}{4600mm} 3,32 kN$$

Check of chord as beam in field between battens According to article EN 1993-1-1: 6.4.3.1 & 6.2.9.1 and formula (6.42)

Table of values				
NG	270.78	kN		
VG 1.66 kN				
MG	0.95	kNm		
Unity check	0.19	-		

The check of the chord will be executed with a section check following the EN 1993-1-1 for the chord profile with the following internal forces on one batten:

 $NG = NChord = 0.5 \cdot NEd + \frac{Med \cdot h0 \cdot Ach}{2 \cdot leff} = 0.5 \cdot 500 kN + \frac{(4860 kNmm) \cdot (210mm) \cdot (6260mm^2)}{2 \cdot 1.538 x \cdot 10^8 mm^4} = 270,78 kN$ VG = VEd / 2 = 3,32 kN / 2 = 1,66 kN

 $MG = \frac{Ved \cdot a}{4} = \frac{3,32kN \cdot 1150mm}{4} = 0.95kNm$

For an I-section a classification is made, for an U-section always an elastic check is done.

This section check will result in a unity check of 0,19

Buckling check of chord

Buckling check of chord According to article EN 1993-1-1: 6.4.3.1 & 6.3.1.1 and formula (6.46)

Table of values		
Nch,Ed	270.78	kN
Buckling length	1150.00	mm
Slenderness	32.41	
Relative slenderness Lambda	0.37	
Buckling curve	b	
Imperfection Alpha	0.34	
Reduction factor Chi	0.94	
Unity check	0.17	-

Nch,Ed = NChord = 170,78 kN (see check of Check of chord as beam in field between battens)

Buckling length = a

Slenderness = $\frac{Buckling length}{\sqrt{\frac{Ich}{Ach}}} = \frac{1150mm}{\sqrt{\frac{7881000mm^4}{6260mm^2}}} = 32,411$

Relative slenderness Lambda $\sqrt{\frac{Ach \cdot fy}{Ncr_z}} = \sqrt{\frac{6260mm^2 \cdot \frac{275N}{mm^2}}{12351000 N}} = 0.373$

With:

$$Ncr_{z} = \frac{\pi^{2} \cdot E \cdot Ich}{(Buckling \ length)^{2}} = \frac{\pi^{2} \cdot \left(\frac{210000N}{mm^{2}}\right) \cdot (7881000mm^{4})}{(1150mm)^{2}} = 12351 \ kN$$

Buckling curve = b, this is the buckling curve for the IPE 330 around the z-axis Imperfection alpha for buckling curve b = 0.34

Reduction factor Chi can be calculated as explained in the buckling check.

Unity check =
$$\frac{NchEd}{NbRd} = \frac{270,78kN}{1618,2 kN} = 0.17$$

With:

Nb, *Rd* = reduction factor Chi
$$\frac{Ach \cdot fy}{\gamma_{M1}} = 0.94 \frac{6260mm^2 \cdot 275N/mm^2}{1.00} = 1618,21 kN$$

Check of batten:

Check of batten

According to article EN 1993-1-1: 6.4.3.1, 6.2.9.2 & 6.2.6 and formula (6.42), (6.19)

Table of values			
t	7.00	mm	
b	220.00	mm	
Т	9.09	kN	
MG	0.95	kNm	
Sigma	16.9	MPa	
Unity check	0.06	-	
Tau	5.9	MPa	
Unity check	0.04	-	

t thickness of batten

b width of batten

T
$$= \frac{VEd \cdot a}{h0 \cdot 2} = \frac{3.32kN \cdot 1150mm}{210mm \cdot 2} = 9.09kN$$

MG = 0.954 kNm (see previous check)

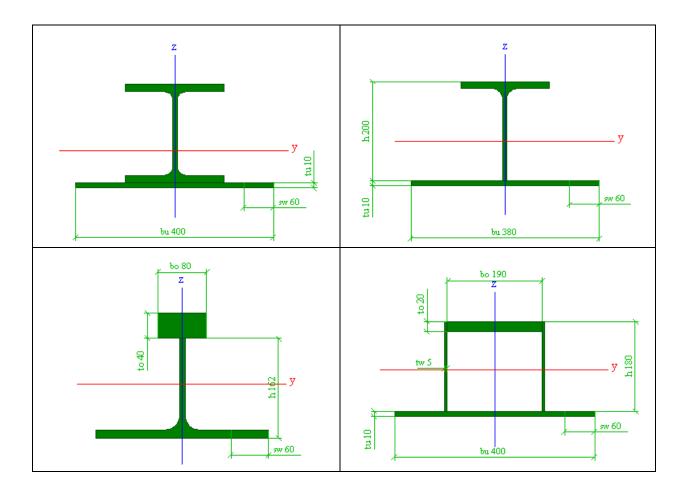
Sigma
$$\frac{MG \cdot b/2}{Ib} = \frac{954000Nmm \cdot 220mm/2}{6.211 \cdot 10^6 mm^4} = 16,9MPa$$

(calculation of Ib see calculation of Sv at the properties)

Unity check sigma:
$$= \frac{Sigma}{\frac{fy}{\gamma_{M0}}} = \frac{16,9MPa}{\frac{275N/mm^2}{1.00}} = 0.06$$

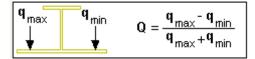
Tau
$$= \frac{T}{b \cdot t} = \frac{9090N}{220mm \cdot 7mm} = 5.9MPa$$

Tau

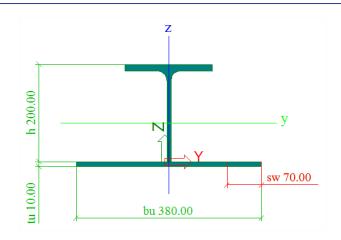

$$\frac{9090N}{mm\cdot7mm} = 5.9MPa$$

Unity check Tau: = $\frac{Tau}{\frac{fy/\sqrt{3}}{Y_{M0}}}$ $\frac{\frac{5,9MPa}{\frac{275N/mm^2/\sqrt{3}}{1.00}} = 0.04$

ULS Check for Built-in beams


The built-in beams are of the types SFB (Slim Floor Beam), IFB (Integrated Floor Beam) or THQ (Top Hat Beams).

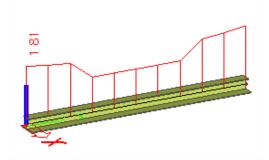
The relevant section classification according to the proper code is performed. Classification for class 1, 2, 3 and 4 is supported. For the ULS section check, the local plate bending is taken into account for the plastic moment capacity and the bending stresses in the section. Out-of-balance loading is checked.


This out-of-balance check has been inputted by a factor "Q".

When inputting a line load on such a section, the option "Bottom flange" can be checked and afterwards a Q factor (an out-of-balance factor) can be inputted in the properties window of this line load. This Q factor indicates the distribution of the force:

If Q = 0, both sides are loaded equally, Q=1: one side is loaded the other side isn't.

The position of the load is indicated in the cross section library by the value s_w:



Example: Built-in beams.esa

In this example a beam with an IFB profile has been inputted with a line load of 100kN/m and an out-ofbalance factor Q=0.8:

	Properties Line force on beam (1)	+ > 	
	Name	LF1	
	Direction	Z	-
	Туре	Force	-
	Angle [deg]		
	Distribution	Uniform	-
	Value - P [kN/m]	-50,00	
	Bottom flange		
	Q - factor	0,8	

In the steel code check, the out-of-balance check is given:

Section check inclusive local q loading

according to ECCS No.83 "Design Guide for Slim Floors with Built-in Beams"

Table of values			
q max	45.00	kN/m	
q min	5.00	kN/m	
e1	286.67	mm	
e2	0.00	mm	
bu	380.00	mm	
tu	10.00	mm	
bo	180.00	mm	
to	13.50	mm	
hf	198.25	mm	
bf	0.00	mm	

Normal stress check according to formula (5.15)

Table of valuesSigma x-70.25MPaSigma y387.00MPaunity check1.81

Shear stress check

Table of values				
Sigma x -75.33 MPa				
Tau	6.75	MPa		
unity check	0.32			

Torsion check according to formula (4.15)

Table of values			
e	143.33	mm	
Q	40.00	kN/m	
L	4.00	m	
Lk	2.91	m	
Io	6561000.00	mm⁴	
Mt,max	4.13	kNm	
Mw,max	7.34	kNm	
Tau t max	176.05	MPa	
Tau w max	22.86	MPa	
unity check	1.47		

Optimisation

In SCIA Engineer there are two ways of performing an optimization:

- 1. Cross section optimisation: Optimisation of a chosen cross section.
- 2. Overall optimisation: Optimisation of one or more (or all) cross sections at the same time.

Both options are explained in the next two paragraphs.

Cross section optimisation

With this option the user can optimise a cross section for the steel code check. This will be explained in the example below.

Example: Optimisation.esa

The optimisation can be found via "Steel -> Beams -> ULS Checks -> Check". First the steel code check has to be calculated, so first click on "Refresh".

When clicking now on "Autodesign", SCIA Engineer will give the following message:

And in the properties window the option for "Filter" has been changed into "Cross-section". Now choose here for the profile IPE 140 and click again on "Refresh" and afterwards on "Autodesign".

Autodesign of the cross-section				×	
Autodesign Maximal check	1	E			
Maximum unity check:	2.696				
Edit constraints	Info				
Edit	Change				
Next down	Next up				
Search for	optimal				
Direction	Up & down 💌	N			
Parameter		1	· · · · · · · · · · · · · · · · · · ·	_	
1 - catalogue: IPE140	•	ť	_/`		_
Param.	Value	Autodesign	List		Sort by
1 I sections	IPE140	Ves Ves	No	▼ H	*
Set value	Select/Deselect All	Test relation	ons	ОК	Cancel

Now the "Autodesign of the cross-section" window will open:

First you can fill in the maximal check. Normally this is a unity check of 1.00. The Maximum unity check displayed below is the maximum unity check for the IPE140, found in this project.

When clicking on "Search for optimal", SCIA Engineer will suggest the smallest IPE profile which will resist the calculated internal forces.

In this example an IPE 200 will be found. When clicking on "OK" now, SCIA Engineer will replace this IPE140 profile by an IPE200 profile automatically.

Now the steel code check of this IPE200 profile is executed with the internal forces calculated with the properties of the IPE140 profile. For example the self weight will not be taken into account correctly. So the project should be recalculated, before accepting those new unity check results.

It is also possible to use a list of sections.

With this list it is possible to indicate which sections can be used or not. For example the section IPE140A can be filtered out the possibilities for the autodesign.

Recalculate the project and let's make a list for the columns. This can be done through "Library -> Structure, analysis, Cross-section list" and choose for "Library cross-section of one type".

List of available cross-sections			
Form code	Code name	Selected to list	
I sections Rectangular hollow sections Circular hollow sections L sections Channel sections T sections Full rectangular sections Full circular sections Rolled Z sections Cold formed angle sections Cold formed Channel sectio Cold formed C sections Cold formed C sections Cold formed C section eave Cold formed C section eave Cold formed C-Plus section Cold formed ZED section as Cold formed ZED section as Cold formed ZED section in Cold formed ZED section in Cold formed Sigma section	 A H(JIS) HD HD(ARC) HE HEA HEB HEC HEM HG(GOST) HHD HL HL(SZS) HM(CH) HN(CH) HP(ARC) HP(ARC) HP(ARC) HP(ARC) HP(ARCD) HP(GERD) HP(MP) HT(CH) HV(CH) HW(CH) 	 ▲ HEA100 HEA100A HEA120 HEA120A HEA140A HEA140A HEA140A HEA160 HEA160A HEA180A HEA200 HEA200A HEA2200 HEA220A HEA220A HEA220A HEA220A HEA240A HEA260A HEA260A HEA260A HEA280A HE	Cancel

Now select the profiles that should be added to this list:

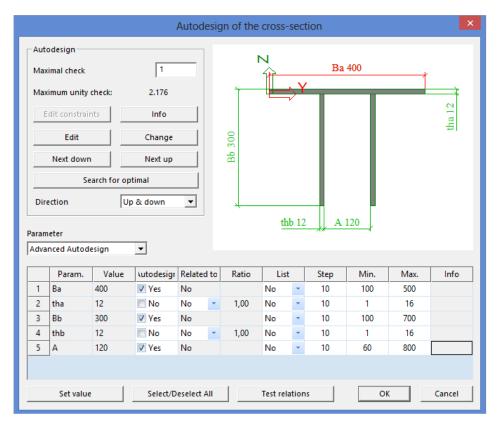
When performing an Autodesign in the steel menu now for the columns HEA220, this list can be chosen:

Autodesign of the cross-section				
Autodesign				
Maximal check	1			
Maximum unity check	c 0.386			
Edit constraints	Info			
Edit	Change			
Next down	Next up			
Search	for optimal			
Direction	Up & down 🔻	N		
Parameter				_
1 - catalogue: HEA220	•			
Param.	Value	Autodesign	List	Sort by
1 I sections	HEA220	Ves Ves	LIST1 🝷 H	•
Set value	Select/Deselect All	Test relati	ons OK	Cancel

For the moment this profile has a maximum unity check of 0.386, so SCIA Engineer will search for the smallest profile from this "LIST1" which will pass the unity check

Close this example without saving! It will be used in the next paragraph again!

In the next example the different options of the cross-section optimisation are explained.


Example: Optimisation2.esa

Go here to "Steel -> Beams -> ULS checks -> Check" and go to the Autodesign menu for this beam.

This profile has a lot of parameters, so the user can choose which parameters should be updated:

	Autode	esign of the cross-section	×
Autodesign Maximal check Maximum unity check: Edit constraints Edit Next down	1 2.176 Info Change Next up	DOE GR	tha 12
Direction Parameter 1 - dimension: Ba	or optimal	thb 12 , A 120	
1 - dimension: Ba 2 - dimension: Ha 3 - dimension: Bb 4 - dimension: A 5 - dimension: A Advanced Autodesign Coupled Set Autodesign	odesigr Related ′es No	a to Ratio List Step Min. Max. No ▼ 10 100 500	Info
Set value	Select/Deselect Al	All Test relations OK	Cancel

Also the option "**Advanced Autodesign**" will appear. With this option several parameters can be optimized at the same time and restriction for each parameter can be given. So input the following options:

So the thicknesses thb and tha are not autodesigned. All other options can be adapted by SCIA Engineer. When clicking on "Search for an optimal", the following profile is suggested by SCIA Engineer:

Autodesign of the cross-section							×				
	odesign ——		1	_		, t		Ba	390	1	
Мах	kimum unity c	heck:	0.999							the 12	-
E	dit constrain	ts	Info							Ę	1
	Edit		Change		Bb 430						
	Next down		Next up		ä						
	Sea	arch for op	timal			N					
Dir	ection	Up	o & down	-				ς Υ			
Param	neter					thb 12	2	AZ	270		
	nced Autode	sign	•				_*	f		r	
	Param.	Value	\utodesigr	Related to	Ratio	List		Step	Min.	Max.	Info
1	Ba	390	Ves 🗸	No		No	-	10	100	500	
2	tha	12	🗖 No	No	1,00	No	+	10	1	16	
3	Bb	430	Ves 🗸	No		No	-	10	100	700	
4	thb	12	🗖 No	No	1,00	No	-	10	1	16	
5	А	270	Ves 🛛	No		No	-	10	60	800	
	Set value		Select/D	eselect All		Test rela	tion	s	0	(Cancel

With the option "Set value" a value for a certain parameter can be set. So select the parameter "Ba" and click on "Set value". Now a value of 500mm can be inputted. And the Maximum unity check for this profile will be adapted automatically.

Overall optimisation

It is also possible to perform an overall optimisation in SCIA Engineer. With this option, one or more profiles can be optimised at the same time. Afterwards the calculation will be restarted and the internal forces are recalculated with the new cross-sections, followed again with a new optimisation.

This iterative process can

- Or stop because all profiles does not have to be autodesigned and the same profile was found as in the previous step
- Or stop because the maximum number of iteration steps has been reached if this is inputted by the user.

It is advised to input a number of iteration steps, otherwise this optimisation process can become a loop and will stop after 99 iteration steps. This will cost a lot of calculation time.

The principle of the overall optimisation process is explained by the following example.

Example: Optimisation.esa

If this example is still open from the previous chapter, please close it and reopen it without saving.

Calculate the project and go to "Main -> Calculation, Mesh -> **Autodesign**". Click here on **Add item** and choose for "Steel > Cross-section AutoDesign" and add all cross-sections in this Autodesign process.

The combination, for which the optimisation calculation has to be calculated, can be chosen.

Also for each profile, the user can indicate if this profile has to be autodesigned only in the "Up" direction (so only become bigger) or in the 'Up and down" direction (and also can become a smaller profile as result). With this last option, there is a chance that the iterative process will become a loop.

				Ov	verall Autodesign	×
Property		Parameters			┌ Picture ────	_
Name _0)1	Cross-section	CS1 - HEA2	·		
Type of loads C	Combinati 🝷	Parameter	HEA220			
Combinations C	01 - ULS 👻	Use cross-sect				
Autodesign t St	teel - Cros	Rolled	HEA220			
Items count 4		Sort by	Height			
		Starting CSS	Actual			
		Search pattern	Find first ok			
		Direction	Up and dov			
		Maximal chec	1,00			
Items 1. CS1 (HEA220)		Autodesign c	0,00			
2. CS2 (IPE140) 3. CS3 (IHFLeq45x45) 4. CS4 (IPE100)	x5)					
Remove Item	Add item					
					Autodesign Calculation Close	

Now Close this window. And click in the next window on Optimisation Routine:

Overall Autodesign				
🎜 🤮 🗶 📸 💽 🖄	🗠 🚭 😂 🔒 Al	• 7		
01	Name	01 ^		
	Type of loads	Combinations 🔹		
	Combinations	CO1 - ULS 🔹		
	Autodesign type	Steel - Cross-section Au		
	Items count	4		
	Autodesign item	ltem 1 🔹		
	Autodesign item			
	Cross-section	CS1 - HEA220 🔹		
	Parameter	HEA220		
	Use cross-section list			
	Rolled	HEA220		
	Sort by	Height		
	Starting CSS	Actual		
New Insert Edit	Delete Optim.Routine Autoo	design all Calculate Close		

Now the user can choose for a maximum number of iteration steps:

- Determine automatically: the iteration process will stop if all the profiles are autodesigned and no different result will be found in a certain iteration step. So no maximum of number of iteration steps will be inputted.
- Limit number of iteration: maximum of number of iteration steps.

Input 5 iteration steps as limit number and click on "Start".

Now the iteration process will start. The iteration process will stop after no difference will be found or after 5 iteration steps. In this example SCIA Engineer will stop after 4 iteration steps, because all profiles remain the same after the fourth step.

After this process an information window about this iteration will be displayed.

ITERATION STEP 1:

1. Routine step: 1

1.1. 01

Cross-section	Parameter	Sort by	Original cross-section	Autodesign of cross-section	Autodesign check [-]
CS1 - HEA160	HEA160	Height	CS1 - HEA220	CS1 - HEA200	0,85
CS2 - IPE200	IPE200	Height	CS2 - IPE140	CS2 - IPE200	0,94
CS3 - HFLeq90x90x9	HFLeq90x90x9	Height	CS3 - HFLeq45x45x5	CS3 - HFLeq60x60x6	0,95
CS4 - IPE140A	IPE140A	Height	CS4 - IPE100	CS4 - IPE140AA	0,91

Changed profiles:

- CS1: HEA220 > HEA200
- CS2: IPE140 -> IPE200
- CS3: HFLeq45x45x5 -> HFLeq60x60x6
- o CS4: IPE100 -> IPE140AA

ITERATION STEP 2:

2. Routine step: 2

Cross-section	Parameter	Sort by	Original cross-section	Autodesign of cross-section	Autodesign check [-]
CS1 - HEA160	HEA160	Height	CS1 - HEA200	CS1 - HEA180A	0,93
CS2 - IPE200	IPE200	Height	CS2 - IPE200	CS2 - IPE200	0,91
CS3 - HFLeq90x90x9	HFLeq90x90x9	Height	CS3 - HFLeq60x60x6	CS3 - HFLeq80x80x10	0,81
CS4 - IPE140A	IPE140A	Height	CS4 - IPE140AA	CS4 - IPE140A	0,94

Changed profiles:

- CS1: HEA200 > HEA180A
- CS2: IPE200 -> IPE200
- CS3: HFLeq60x60x6 -> HFLeq80x80x10
- CS4: IPE140AA -> IPE140A

ITERATION STEP 3:

3. Routine step: 3

Cross-section	Parameter	Sort by	Original cross-section	Autodesign of cross-section	Autodesign check [-]
CS1 - HEA160	HEA160	Height	CS1 - HEA180A	CS1 - HEA160	0,95
CS2 - IPE200	IPE200	Height	CS2 - IPE200	CS2 - IPE200	0,93
CS3 - HFLeq90x90x9	HFLeq90x90x9	Height	CS3 - HFLeq80x80x10	CS3 - HFLeq90x90x9	0,97
CS4 - IPE140A	IPE140A	Height	CS4 - IPE140A	CS4 - IPE140A	0,93

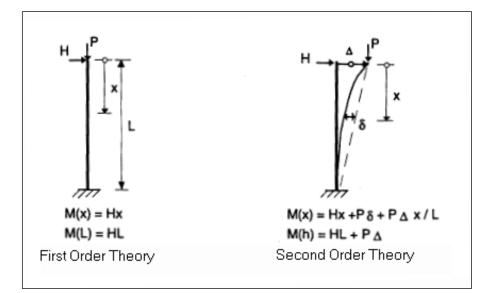
Changed profiles:

- CS1: HEA180Z > HEA160
- CS3: HFLeq80x80x10 -> HFLeq90x90x9
- CS4: IPE140A -> IPE140A

ITERATION STEP 4: 4. Routine step: 4

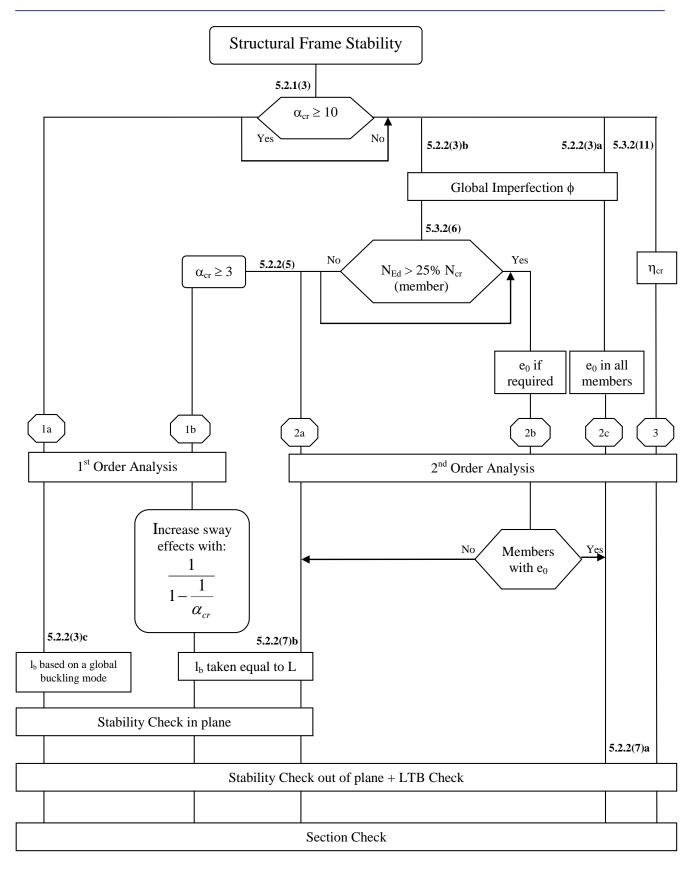
Cross-section	Parameter	Sort by	Original cross-section	Autodesign of cross-section	Autodesign check [-]
CS1 - HEA160	HEA160	Height	CS1 - HEA160	CS1 - HEA160	0,92
CS2 - IPE200	IPE200	Height	CS2 - IPE200	CS2 - IPE200	0,95
CS3 - HFLeq90x90x9	HFLeq90x90x9	Height	CS3 - HFLeq90x90x9	CS3 - HFLeq90x90x9	0,99
CS4 - IPE140A	IPE140A	Height	CS4 - IPE140A	CS4 - IPE140A	0,93

No profile is adapted. So the iteration process is stopped.


2nd order calculation and imperfections

Overview

Global analysis aims at determining the distribution of the internal forces and moments and the corresponding displacements in a structure subjected to a specified loading. The first important distinction that can be made between the methods of analysis is the one that separates elastic and plastic methods. Plastic analysis is subjected to some restrictions. Another important distinction is between the methods, which make allowance for, and those, which neglect the effects of the actual, displaced configuration of the structure. They are referred to respectively as **second-order theory and first-order theory** based methods.


The second-order theory can be adopted in all cases, while first-order theory may be used only when the displacement effects on the structural behavior are negligible.

The second-order effects are made up of a local or member second-order effects, referred to as the P- δ effect, and a global second-order effect, referred to as the P- Δ effect.

On the next page an overview of the global analysis following the EN 1993-1-1, chapter 5, will be given:

- All the rules in this overview are given in the EN 1993-1-1 art. 5. For each step the rule will be indicated. The first rule ($\alpha_{cr} \ge 10$) will be explained in EN 1993-1-1 art. 5.2.1(3).
- In this overview 3 paths are defined:
 - Path 1: In this path a first order calculation will be executed
 - Path 2: In this path a second order calculation will be executed with global (and bow) imperfections.
 - Path 3: In this path a second order calculation will be executed with the buckling shape of the construction as imperfection.
- The calculation will become more precise when choosing for a higher path.
- The lower paths will result in a faster calculation, because a first order calculation can be executed without iterations, but this first-order theory may be used only when the displacement effects on the structural behavior are negligible.
- o In the next paragraphs the rules in this overview will be explained.

With: η_{cr}

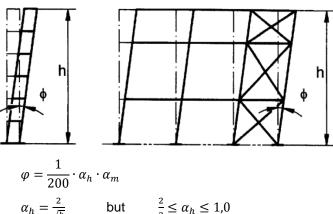
- Elastic critical buckling mode.
- L Member system length
- I_b Buckling Length

Alpha critical – Not in concept edition

The calculation of alpha critical is done by a stability calculation in SCIA Engineer. For this calculation a Professional or an Expert edition is necessary. The stability calculation has been inputted in module esas.13.

According to the EN 1993-1-1, 1st Order analysis may be used for a structure, if the increase of the relevant internal forces or moments or any other change of structural behaviour caused by deformations can be neglected. This condition may be assumed to be fulfilled, if the following criterion is satisfied:

$$\alpha_{cr} = \frac{F_{cr}}{F_{Ed}} \ge 10$$
 for elastic analysis


 $\begin{array}{lll} \mbox{With:} & \alpha_{cr} \mbox{:} & \mbox{the factor by which the design loading has to be increased} \\ & \mbox{to cause elastic instability in a global mode.} \\ & \mbox{F}_{Ed} \mbox{:} & \mbox{the design loading on the structure.} \\ & \mbox{F}_{cr} \mbox{:} & \mbox{the elastic critical buckling load for global instability,} \\ & \mbox{based on initial elastic stiffnesses.} \end{array}$

If α_{cr} has a value lower then 10, a 2nd Order calculation needs to be executed. Depending on the type of analysis, both Global and Local imperfections need to be considered.

EN1993-1-1 prescribes that 2nd Order effects and imperfections may be accounted for both by the global analysis or partially by the global analysis and partially through individual stability checks of members.

Global frame imperfection ϕ

The global frame imperfection will be inputted for the whole structure by an imperfection value ϕ . This value can be calculated with the following formula (EN 1993-1-1 art. 5.3.2(3)a):

$$\alpha_m = \sqrt{0.5\left(1 + \frac{1}{m}\right)}$$

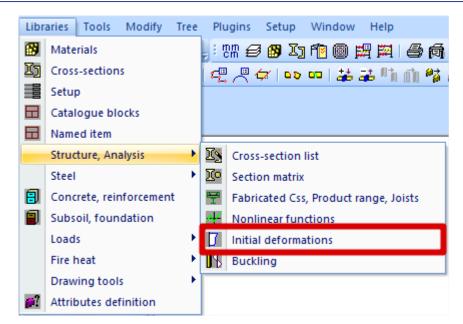
With: h The height of the structure in meters

The number of columns in a row including only those columns which carry a vertical load N_{Ed} not less than 50% of the average value of the vertical load per column in the plane considered.

The global imperfection can be inputted in SCIA Engineer in the non linear combinations as explained by the example below.

Example: Industrial Hall.esa

In this example, two global imperfections functions will be used: one according to global X-direction and one according to the global Y direction. It is not necessary to combine both imperfections in the same combination.


In SCIA Engineer the user can choose between four options for the **global imperfection** in the non linear combinations:

	Nonlinear combinations					
🎜 💱 🖋 🕏 🖄	. 🗠 🞒 Al	• 7				
NC1	Name	NC1				
NC2	Description					
NC3 NC4	Туре	Ultimate 🔹				
NC5	Contents of combination					
NC6	LC1 - Self Weight [-]	1,35				
NC7 NC8	LC2 - Self Weight Cladding [-]	1,35				
NC8 NC9	LC3 - Maintenance [-]	1,50				
NC10	LC4 - Snow [-]	0,75				
NC11	3DWnd10 - 180, + CPE, - CPI [-]	0,90				
NC12 NC13	Bow imperfection	None				
NC14	Global imperfection	Inclination functions				
NC15 NC16	dx inclination functions	None				
NC17	Z	Simple inclination Inclination functions				
NC18	Y	Deform. from loadcase				
NC19	dy inclination functions					
NC20	Z	None 🔹				
	x	None				
	dz inclination functions					
	x	None 🔹				
	Y	None				
New from linear combination	ns New Insert Edit Delet					
Invew from linear combination	ns New Insert Edit Delet	e Close				

- o None: No global imperfection will be taken into account
- **Simple inclination**: the user will input a deformation in the global X- or/and Y-direction as the imperfection in mm per meter height in the global Z-direction [mm/m].
- **Inclination functions**: input a user inclination function or the inclination function of the EN 1993-1-1 (this option is explained below).
- **Deformation from loadcase**: with this option the user can choose for a calculated loadcase and the deformation of that loadcase will be used as initial global imperfection.

In this example the option "inclination functions" has been chosen.

These inclination functions are entered through "Main -> Library -> Structure, Analysis -> Initial deformations":

The Type is chosen as "EN 1993-1-1 art. 5.3.2(3)", with a standard imperfection of 1/200.

The height of the construction is 8.4m for both inclination functions.

There are 6 columns in the X-direction, but in the middle only 2 columns are inputted. Because a long part of structure only has 2 columns in the X-direction, in this example the number of columns in this direction has been inputted as "2".

There are 11 columns in the Y-direction. But the columns at the end are smaller than the middle ones. So in this example it is decided to input "9" columns in the Y-direction.

The inclination function for the x-direction (Def_X) in SCIA Engineer is displayed below:

Initial deformations × ▲ 밝 ★ 略 ▶ Ω ♀ ● ● ● ● ▲ ✓				
Def_Y				
Name	Def_X			
Туре	EN 1993-1-1 art. 5.3.2(3)			
Basic imperfection value : 1 / [-]	200,00			
Height of structure : [m]	8,400			
Number of columns per plane :	2			
Φ:	0,00298800			
α _h :[-]	0,69			
α _m :[-]	0,87			
New Insert Edit Delete	Close			

In this example 5 non linear combinations are inputted:

- 1,35 x Self Weight + 1,35 x Self Weight Cladding + 1,5 x Maintenance
 + 0,75 x Snow + 0,9 x 3DWind10
- 1,35 x Self Weight + 1,35 x Self Weight Cladding + 0,75 x Snow + 1,5 x 3DWind13
- 1,35 x Self Weight + 1,35 x Self Weight Cladding + 0,75 x Snow + 1,5 x 3DWind14
- 0 1,35 x Self Weight + 1,35 x Self Weight Cladding + 0,75 x Snow + 1,5 x 3DWind15

0 1,35 x Self Weight + 1,35 x Self Weight Cladding + 0,75 x Snow + 1,5 x 3DWind16

All combinations are entered four times:

- NC1-NC5: inclination in the positive X- direction
- NC6-NC10: inclination in the negative X- direction
- o NC11-NC15: inclination in the positive Y- direction
- o NC16-NC20: inclination in the negative Y- direction

Nonlinear combinations						
🏓 🤮 🗶 🛍 💺 🖄	. 🗠 🎒 Al	• 7				
NC1	Name	NC1				
NC2	Description					
NC3 NC4	Туре	Ultimate	-			
NC5	Contents of combination					
NC6	LC1 - Self Weight [-]	1,35				
NC7	LC2 - Self Weight Cladding [-]	1,35				
NC8 NC9	LC3 - Maintenance [-]	1,50				
NC10	LC4 - Snow [-]	0,75				
NC11	3DWnd10 - 180, + CPE, - CPI [-]	0,90				
NC12 NC13	Bow imperfection	According to buckling data	-			
NC14	Global imperfection	Inclination functions				
NC15	dx inclination functions					
NC16 NC17	z	Def_X				
NC18	Factor	None	-			
NC19	Sense	+				
NC20	Y	None	-			
	dy inclination functions					
	z	None	-			
	x	None	+			
	dz inclination functions					
	x	None	+			
	Y	None	+			
	·		_			
New from linear combinatio	ns New Insert Edit Dele	te	Close			

Bow imperfection

N_{Ed} > 25% N_{cr}

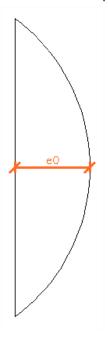
The relative initial local bow imperfections of members for flexural buckling is given as the value: e_0/L .

This bow imperfection does not have to be applied on each member as given in EN 1993-1-1 art. 5.3.2(6):

The bow imperfection has to be applied when the normal force N_{Ed} in a member is higher than 25% of the member's critical load N_{cr} :

When performing the global analysis for determining end forces and end moments to be used in member checks according to 6.3 local imperfections may be neglected. However for frames sensitive to second order effects local bow imperfections of members additionally to global sway imperfections should be introduced in the structural analysis of the frame of each compressed member where the following conditions are met:

• At least one moment resistant joint at one member end


•
$$\bar{\lambda} > 0.5 \sqrt{\frac{A \cdot f_y}{N_{Ed}}}$$

And
$$\bar{\lambda} = \sqrt{\frac{A \cdot f_y}{N_{cr}}}$$

Thus: $\sqrt{\frac{A \cdot f_y}{N_{cr}}} > 0.5 \sqrt{\frac{A \cdot f_y}{N_{Ed}}}$ $\frac{1}{N_{cr}} > 0.25 \frac{1}{N_{cr}}$

 $N_{Ed} > 0,25 N_{cr}$

Bow imperfection e₀

The initial bow imperfection is given by:

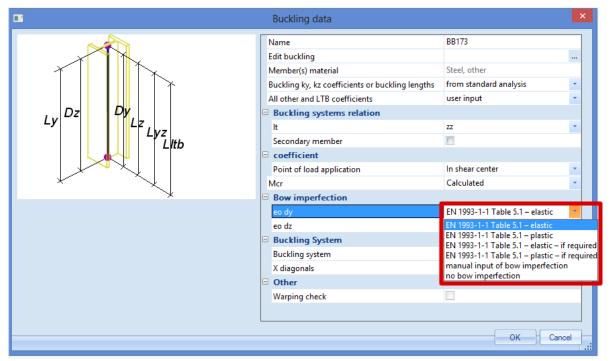
Buckling curve acc. to Table 6.1	elastic analysis e ₀ / L	plastic analysis e ₀ / L
a ₀	1 / 350	1 / 300
а	1 / 300	1 / 250
b	1 / 250	1 / 200
с	1 / 200	1 / 150
d	1 / 150	1 / 100

Where L is the member length.

As explained in the previous chapter, the bow imperfection has to be applied when the normal force N_{Ed} in a member is higher than 25% of the member's critical buckling load N_{cr} . If N_{Ed} < 25% N_{cr} , the user can choose to apply this bow imperfection or not.

The buckling curve used for calculation of the imperfection is the curve inputted in the cross-section library. For standard sections, the curve according to the code is automatically used, for non-standard cross sections (as general cross sections) the user needs to input the buckling curve manually.

Example: Industrial hall.esa


In SCIA Engineer the user can choose between three options for the **bow imperfection** in the non linear combinations:

	Nonlinear combinations			
🔎 🦆 🏒 📫	k Ω ≌ ∰ AI	• 7		
NC1	Name	NC1		
NC2	Description			
NC3 NC4	Туре	Ultimate		
NC5	Contents of combination			
NC6	LC1 - Self Weight [-]	1,35		
NC7	LC2 - Self Weight Cladding [-]	1,35		
NC8 NC9	LC3 - Maintenance [-]	1,50		
NC10	LC4 - Snow [-]	0,75		
NC11	3DWnd10 - 180. + CPE CPI [-	•		
NC12 NC13	Bow imperfection	According to buckling data		
NC14	Global imperfection	None		
NC15	dx inclination functions	Simple curvature		
NC16 NC17		According to buckling data		
NC18	Factor	None		
NC19	Sense	+		
NC20	V	None		
	 dy inclination functions 			
	Z	None		
	x	None		
	A dz inclination functions			
	x	None		
	Y	None		
	1	None		
New from linear co	mbinations New Insert Edit	Delete	Close	

- o None: No bow imperfection will be taken into account
- **Simple curvature**: the user will input a deformation "f" or "1/f" for all the members, where "1/f" corresponds with the value "e0/L" as explained earlier.
- According to buckling data: with this option the user can choose for a local imperfection as defined in the buckling data, so for each member following his own buckling curve (this option is explained below).

In this example the option "According to buckling data" has been chosen.

The buckling data can be inputted via "Steel -> Beams -> Member Check data -> Member buckling data"

The user can choose between 6 options:

- EN 1993-1-1 Table 5.1 elastic: the elastic value following the buckling curve of the cross section will be used.
- EN 1993-1-1 Table 5.1 plastic: the plastic value following the buckling curve of the cross section will be used.
- EN 1993-1-1 Table 5.1 elastic if required: the elastic value following the buckling curve of the cross section will be used if Ned > 25% Ncr.
- EN 1993-1-1 Table 5.1 plastic if required: the plastic value following the buckling curve of the cross section will be used if Ned > 25% Ncr
- **Manual input of bow imperfection**: the user can input manually a value for this bow imperfection.
- o No bow imperfection: no bow imperfection is taken into account for the member.

In this example on all beams the bow imperfection "According to code – elastic" has been inputted. Except for the diagonals no bow imperfection has been inputted in this example.

Buckling shape as imperfection - η_{cr} – Not in concept edition

The calculation of alpha critical is done by a stability calculation in SCIA Engineer. For this calculation a Professional or an Expert edition is necessary. The stability calculation has been inputted in module esas.13.

As an alternative the global and bow imperfection can be replaced by the buckling shape as imperfection (path 3 from the global diagram).

To input geometrical imperfections, the functionality **Nonlinearity > Initial deformations and curvature** and **Stability** must be activated.

	ļ	Project	t dat	а			×
Basic data Functionality Actions Protection							
🚳 SCiA	Dynamics		^	E	Nonlinearity		~
	Initial stress				-	v	
	Subsoil				2nd order - geometrical nonlin	V	
	N i'				Beam local nonlinearity	V	
	Stability				Support nonlinearity/Soil spring		
	Climatic loads	V			Friction support/Soil spring		
	Prestressing				Membrane elements		
	Pipelines				Press only 2D members		
	Structural model	1			General plasticity		
	BIM properties				Sequential analysis		
	Parameters			E	Steel		
	Mobile loads				Plastic hinges		
	Automated GA drawings				Fire resistance		
	LTA - load cases				Connection modeller		
	External application checks				Frame rigid connections		
	Property modifiers				Frame pinned connections		
	Bridge design		J		Grid pinned connections		J
	L		Ŧ	L			<u> </u>
					ОК	Can	cel

So first the stability calculation (linear or non linear) is calculated. Afterwards in the non linear combinations, the user can choose the buckling shape he wants to take into account. So first he can choose for the stability combination and just below for the calculated mode. If for example the first and second mode give a negative value for the alpha critical, it could be possible that the user wants to use the 3rd calculated buckling mode:

Nonlinear combinations				
🎜 🤮 🗶 📸 💽 🗠	. 🖭 😂 I 🗛	• 7		
NC1	Name	NC1		
NC2	Description			
NC3 NC4	Туре	Ultimate		
NC5	□ Contents of combination			
NC6	LC1 - Self Weight [-]	1,35		
NC7	LC2 - Self Weight Cladding [-]	1,35		
NC8 NC9	LC3 - Maintenance [-]	1,50		
NC10	LC4 - Snow [-]	0,75		
NC11	3DWnd10 - 180, + CPE, - CPI [-]	0,90		
NC12 NC13	Bow imperfection	None		
NC14	Global imperfection	Buckling shape		
NC15	Stability	S1 v		
NC16	Eigen shape	1		
NC17 NC18	Max deformation [mm]	10,0		
NC19	Max deformation [mm] 10,0			
NC20				
New from linear combinations New Insert Edit Delete Close				


The last option that has to be inputted is a value for the maximum deformation. This is the deformation of the node which has the biggest deformation of the construction. SCIA Engineer will recalculate all the displacement of the other nodes using this maximal deformation.

Since the buckling shape is dimensionless, EN 1993-1-1 gives the formula to calculate the amplitude η_{init} of the imperfection. In below an example of this calculation is given for a simple example.

Example: Buckling Shape.esa

In this example, the procedure to calculate a buckling shape is illustrated for a column.

The column has a cross-section of type **IPE 300**, is fabricated from **S235** and has the following relevant properties:

Calculation of the buckling shape

First a **Stability calculation** is done using a load of 1kN. This way, the elastic critical buckling load N_{cr} is obtained.

In order to obtain precise results, the **Number of 1D elements** is set to **10**. This can be done in "Setup -> Mesh". In addition, the **Shear Force Deformation** is neglected so the result can be checked by a manual calculation.

The stability calculation gives the following result:

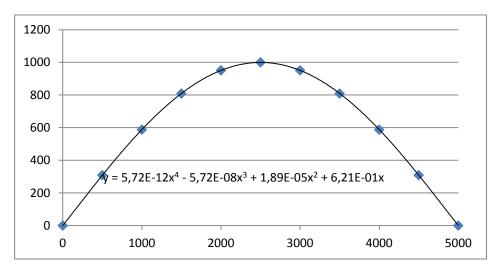
Critical load coefficients

N -	f []
Stabilit	y combination : S1
1	6927,50
2	27714,23
3	62404,64
4	111170,55

This can be verified with Euler's formula using the member length as the buckling length:

$$N_{cr} = \frac{\pi^2 EI}{l^2} = \frac{\pi^2 \cdot 210000N/mm^2 \cdot 8,3560 \cdot 10^7 mm^4}{(5000mm)^2} = 6927,51 \ kN$$

The following picture shows the mesh nodes of the column and the corresponding buckling shape:



Displacement of nodes

Stability calculation, Extreme : No Selection : All Stability combinations : S1/1 - 6927,50 Buckling shapes are dimensionless, units are printed for consistency purposes. Node of mesh Case Ux Uz Fiy [mm] [mm] [mrad] S1/1 - 6927,50 0,0 0,0 628,3 1 11 S1/1 - 6927,50 309,0 0,0 597,6 S1/1 - 6927,50 587**,**8 508,3 3 0,0 4 S1/1 - 6927.50 809,0 0,0 369,3

1	51/1 0527,50	00,000	0,0	505,5
5	S1/1 - 6927,50	951,1	0,0	194,2
6	S1/1 - 6927,50	1000,0	0,0	0,0
7	S1/1 - 6927,50	951,1	0,0	-194,2
8	S1/1 - 6927,50	809,0	0,0	-369,3
9	S1/1 - 6927,50	587,8	0,0	-508,3
10	S1/1 - 6927,50	309,0	0,0	-597,6
2	S1/1 - 6927,50	0,0	0,0	-628,3

Using for example an Excel worksheet, the buckling shape can be approximated by a 4th grade polynomial.

A polynomial has the advantage that the second derivative can easily be calculated.

$$\Rightarrow \quad \eta_{cr} = 5.72 \cdot 10^{-12} \cdot x^4 - 5.72 \cdot 10^{-8} \cdot x^3 + 1.89 \cdot 10^{-5} \cdot x^2 + 6.21 \cdot 10^{-1} \cdot x$$
$$\Rightarrow \quad \eta_{cr,max}^{"} = 6.86 \cdot 10^{-11} \cdot x^2 - 3.43 \cdot 10^{-7} \cdot x + 3.78 \cdot 10^{-5}$$

Calculation of e₀

$$\begin{split} N_{Rk} &= f_y \cdot A = 235 \frac{N}{mm^2} \cdot 5380 \ mm^2 = 1264300 \ N \\ M_{Rk} &= f_y \cdot W_{pl} = 235 \frac{N}{mm^2} \cdot 628400 \ mm^3 = 147674000 \ Nmm \ (class2) \\ \bar{\lambda} &= \sqrt{N_{Rk}/N_{cr}} = \sqrt{1264300N/6885280N} = 0.43 \\ \alpha &= 0.21 \ \text{for buckling curve a} \end{split}$$

$$\chi = \frac{1}{0.5 \left[1 + \alpha (\bar{\lambda} - 0.2) + (\bar{\lambda})^2\right]^2 + \sqrt{\left(0.5 \left[1 + \alpha (\bar{\lambda} - 0.2) + (\bar{\lambda})^2\right]\right)^2 - (\bar{\lambda})^2}} = 0.945$$

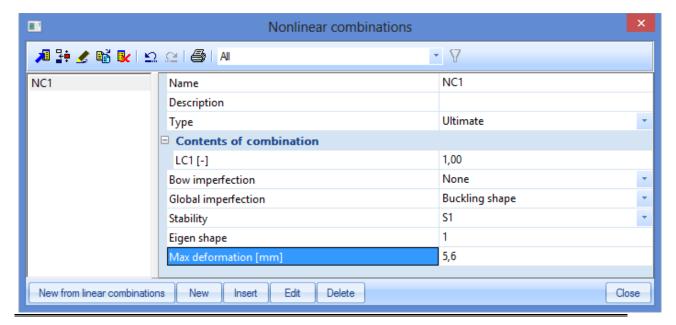
These intermediate results can be verified through SCIA ENGINEER when performing a Steel Code Check on the column:

Buckling parameters	уу	zz	
Sway type	sway	non-sway	
System length L	5,000	5,000	m
Buckling factor k	1,00	1,00	
Buckling length Lcr	5,000	5,000	m
Critical Euler load Ncr	6927,51	500,58	kN
Slenderness Lambda	40,12	149,25	
Relative slenderness Lambda,rel	0,43	1,59	
Limit slenderness Lambda,rel,0	0,20	0,20	

$$\Rightarrow e_{0} = \alpha \cdot \left(\bar{\lambda} - 0, 2\right) \cdot \frac{M_{Rk}}{N_{Rk}} \cdot \frac{1 - \frac{\chi \cdot \left(\bar{\lambda}\right)^{2}}{\gamma_{M1}}}{1 - \chi \cdot \left(\bar{\lambda}\right)^{2}} = \alpha \cdot \left(\bar{\lambda} - 0, 2\right) \cdot \frac{M_{Rk}}{N_{Rk}}$$
$$\Rightarrow e_{0} = 0.21(0.43 - 0.2) \cdot \frac{147674000 \, Nmm}{1264300 \, N} = 5.573 \, mm$$

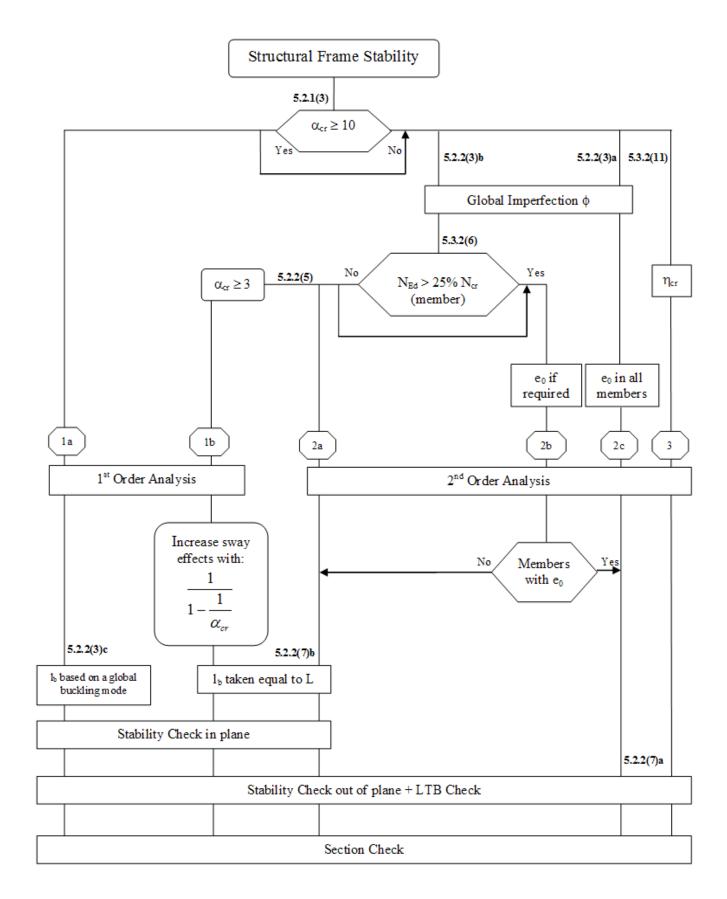
The required parameters have now been calculated so in the final step the amplitude of the imperfection can be determined.

<u>Calculation of η_{init} </u> The mid section of the column is decisive $\Rightarrow x = 2500$


 η_{cr} at mid section = 1000,31

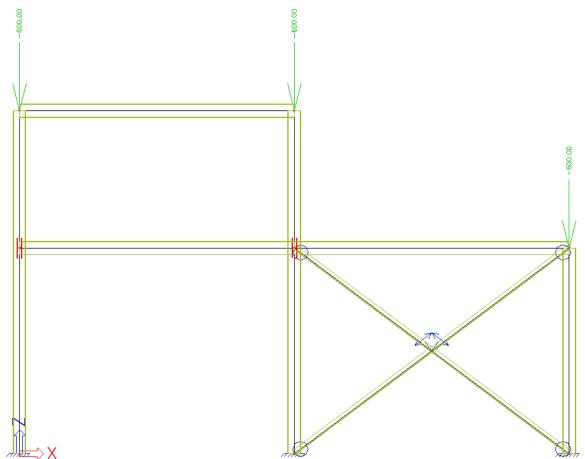
$$\eta_{cr,max}^{"} \text{ at mid section} = -3,912 \cdot 10^{-4} \cdot 1/mm^{2}$$

$$\Rightarrow \quad \eta_{init} = e_{0} \cdot \frac{N_{cr}}{E \cdot I_{y} \cdot \eta_{cr,max}^{"}} \cdot \eta_{cr}$$


$$\Rightarrow \quad \eta_{init} = 5,642 \ mm \frac{6885280 \ N}{210000 N/mm^{2} \cdot 83560000 \ mm^{4} \cdot 3,912 \cdot 10^{-4} \cdot 1/mm^{2}} \cdot 1000$$

$$\Rightarrow \quad \eta_{init} = 5,629 \ mm$$

This value can now be inputted as amplitude of the buckling shape for imperfection.



Examples: Example Overview Paths.esa Example Overview Paths_path 1a.esa Example Overview Paths_path 1b.esa Example Overview Paths_path 2a.esa Example Overview Paths_path 2b.esa Example Overview Paths_path 2c.esa Example Overview Paths_path 3.esa

Example Overview

1 load case, containing 3 point loads of 600 kN.

Path 1a 1st order analysis

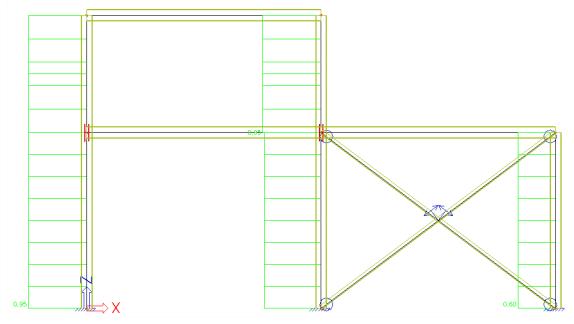
1) Functionalities

	Pro	ject da	ta		×
Basic data Fu	nctionality Actions Protection				
🚳 SCIA	Dynamics] [Nonlinearity	
	Initial stress			Initial deformations and curvat	
	Subsoil			2nd order - geometrical poplin	
	Nonlinearity	1		Beam local nonlinearity	
	Stability		1	Support nonlinearity/ Soil spring	
	Climatic loads			Friction support/Soil spring	
	Prestressing			General plasticity	
	Pipelines			Sequential analysis	
	Church and a dal			Ctaal	

2) Linear calculation

Setup of buckling properties

- buckling factor k: calculated by default by SCIA Engineer (only valid for simple structures!)


- sway/non-sway property: proposition of SCIA Engineer to be checked by user

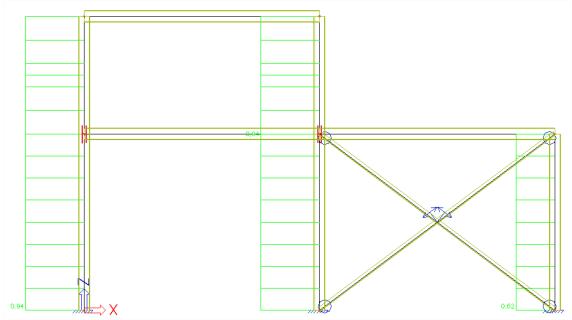
- system length of member: proposition of SCIA Engineer to be checked by user

Alternative: input of buckling factor k or buckling length I by user

Unity check for ULS

→ Flexural buckling check is decisive

3) Nonlinear calculation


Same setup of buckling properties as for linear calculation.

The only difference is the 'tension only' property that has been added to the wind bracings. This means we are still dealing with a 1st order calculation, but a nonlinear calculation has to be executed to take the local nonlinearity 'tension only' into account.

<u>Attention</u>: It is necessary to execute a BATCH calculation (linear & nonlinear), because the buckling properties are calculated only during the linear calculation!

	FE analysis	×
🚳 SCIA	Single analysis Batch analysis	
	 Linear calculation Nonlinear calculation 	য য
	☐ Modal analysis ☐ Stability	
	Concrete - Code Dependent Deflections (CDD)	
	 Construction stage analysis Engineering report regeneration 	
	Solver setup Mesh setup	
	OK Cancel	

Unity check for ULS \rightarrow Flexural buckling check is decisive

Path 1b 1st order analysis

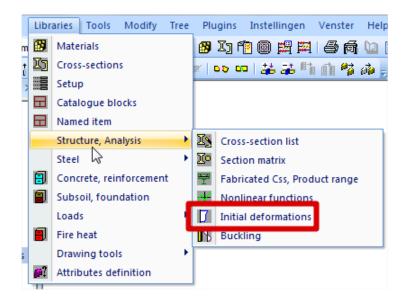
1) Functionalities

		Project dat	ta	
Basic data 🛛 Fu	nctionality Actions Protection			
🚳 SCIA	Dynamics		Nonlinearity	^
	Initial stress		Initial deformations and curvat 🔽	
	Subsoil		2nd order - geometrical nonlin	
	Nonlinearity		Beam local nonlinearity 🔍	
	Stability		Support nonlinearity/Soil spring 🔲	
	Climatic loads		Friction support/Soil spring	
	Prestressing		General plasticity	
	Pipelines		Sequential analysis	
	Charles and the shall		C Charles	

2) Stability calculation

The stability calculation will be performed to determine the critical alpha coefficient. As mentioned in the chapter "Buckling shape as imperfection", the **Average number of tiles of 1d element** is set to **10**.

Mesh setup		
Name	MeshSetup1	
General mesh settings		
Minimal distance between two points [m]	0,001	
Average number of tiles of 1d element	10	
Average size of 2d element/curved element [m]	1,000	
Definition of mesh element size for panels	Automatic	•
Average size of panel element [m]	1,000	
Elastic mesh		


The critical alpha value has to be higher than 3 to be able to use path b of the structural frame stability scheme. In this example, the critical load coefficient is equal to 7,03 (which is in between 3 and 10).

Critical load coefficients

N	f	
-	[]	
Stability of	combination : S1	
1	7,03	
2	22,78	
3	27,07	
4	35,01	

3) Global imperfection

The next step is to insert the global imperfection. This will be done using "Libraries > Structure, Analysis > Initial deformations".

Since this example is made in a 2D-environment, one initial deformation for the x-direction is sufficient. If the project was made in a 3D-environment, it would be needed to create two initial deformations (one in x-direction and one in y-direction).

	Initial deforma	ations	×
🔎 💱 🖋 🖬 💽 🖸	😐 🎒 🗳 🔒 Al		• 7
IDef X			
Name	IDef X		
Туре	EN 1993-1-1 art. 5.3.2 🔻		
Basic imperfection valu	200,00		
Height of structure : [m]	6,000		
Number of columns per	3		
Φ:	0,00333300		
α _h :[-]	0,82		
α _m :[-]	0,82		
New Insert Edit	Delete	1	Close

This global imperfection can now be inserted into the nonlinear combination. Once in the positive x-direction and once in the negative x-direction.

📲 🖓 🛔 🦽 📾	🖸 🗠 🚭 All	- 17	
/u]# 🔏 💷 ĸ		• Y	
IC1	Description		
IC2	Туре	Ultimate	Ψ.
	Contents of combination		
	BG1 [-]	1,00	
	Bow imperfection	None	-
	Global imperfection	Inclination functions	-
	dx inclination functions		
	Z	IDef X	-
	Factor	None	-
	Sense	+	*

4) Linear combination

The inserted imperfections have to be used during the linear calculation. This can be done by referring to the correct nonlinear combination in the linear combination window.

	Combinations	×
🏓 🤮 🗶 🛍 🔽 🖄	🗠 🎒 Input combinations	*
C01	Name	C01
C02	Description	
	туре	Linear - unimate
	Nonlinear combination	NC1 👻
	Amplified Sway Moment method	no
	Amplified Sway Moment method Contents of combination	no no
		1,00
	Contents of combination	
	Contents of combination	
New Insert Edit	Contents of combination	

The **Amplified Sway Moment method** may only be used, if the actual normal force N_{Ed} is smaller than 25% of the critical Euler force N_{cr} . Both values are printed in the detailed output of the steel code check. For column S1:

The critical check is on position 0.000			m	
Internal	forces	Calculated	Unit	
N,Ed		-500,05	kN	
Vy,Ed		0,00	kN	
Vz,Ed		-0,11	kN	
T,Ed		0,00	kNm	
My,Ed		0,22	kNm	
Mz,Ed		0,00	kNm	

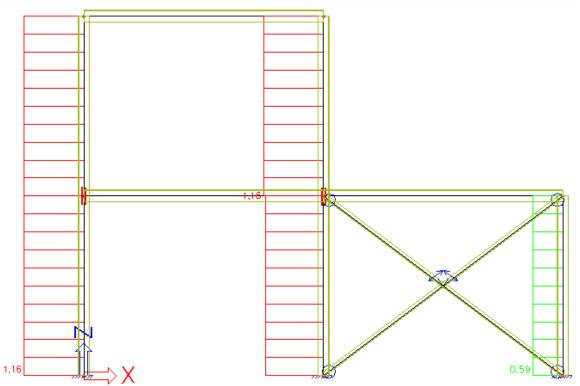
Buckling parameters	уу
Sway type	non-sway
System length L	3,000
Buckling factor k	0,60
Ruckling longth Lor	1,900
Critical Euler load Ncr	23558,43
Slenderness Lambda	21,76
Relative slenderness Lambda,rel	0,23
Limit slenderness Lambda,rel,0	0,20
Buckling curve	b
Imperfection Alpha	0,34
Reduction factor Chi	0,99
Buckling resistance Nb,Rd	1250,09

Next the **Amplified Sway Moment Method** can be activated in the linear combinations and the critical alpha value has to be inserted:

	Combinations	×
🥕 🤃 🖉 📸 💽 🗠 🖉 🕼 Input	combinations 💌	
C01	Name	C01
C02	Description	
	Туре	Linear - ultimate
	Nonlinear combination	NC1
	Amplified Sway Moment method	🔽 yes
	Contents of combination	
	BG1 [-] 1,17	
	Amplified Sway Moment method	
	α _{cr} [-]	7,03
	Amplification factor [-]	1,17
	BG1	🔽 yes
•		
New Insert Edit Delete		Close

5) Linear calculation

The buckling lengths are taken equal to the system lengths. This can be done by inserting buckling ratios equal to 1 manually:


Name BC1 Number of pats 2 Ly Ly	Base settings Buckling data	Buckling and relative lengths.
def z = yy v def y = zz v		Buckling systems relation zz = zz v yz = zz v It = zz v Point of load application In shear center v Mor Calculated v Bow imperfection of load applection v Bow imperfection v e o dy Ino bow imperfection v
OK Cancel Apply	☐ X diagonals	def z = yy v def y = zz v Warping check Buckling system Standard method v

	Buckling and relative lengths.									×					
ſ	Base se	ttings Buck	ling data												
		уу	ky	Sway y	/y	eo dy [mm]	ZZ	kz	Sway zz	eo dz [mm]	kyz	klt	k	kw	٦
	1	V Fixed	1,00	lo	•		V Fixed	1,00	acc. to B 💌		1,00	1,00	1,00	1,00	-
	2	V Fixed	1,00	'es	*		Free Free								
	3	Fixed					Fixed								

In the next step, the calculation can be performed. Since the global imperfections are inserted in the non-linear combination, the linear as well as the nonlinear calculation need to be performed using the Batch analysis.

	FE analysis	×				
🚳 SCIA	Single analysis Batch analysis					
	☑ Linear calculation					
	▼ Nonlinear calculation					
	🗖 Modal analysis					
	Stability					
	Concrete - Code Dependent Deflections (CDD)					
	Construction stage analysis					
	Engineering report regeneration					
	Solver setup Mesh setup					
	OK Cancel					

Unity check for ULS \rightarrow Flexural buckling check is decisive

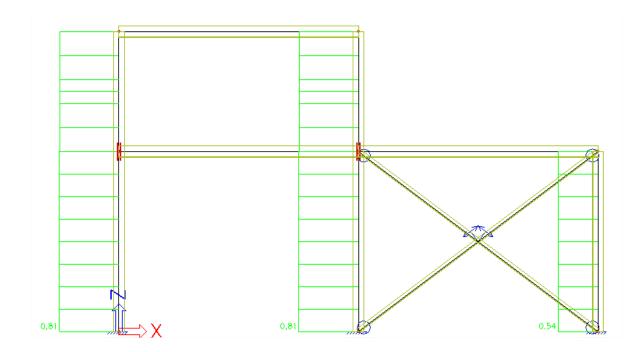
Path 2a 2nd order analysis – Global imperfection (initial inclination)

1) Functionalities

		Project data		×
Basic data Fu	nctionality Actions Protection			
Scia	Dynamics		Nonlinearity	^
Engineer	Initial stress		Initial deformations and curvat 📝	
	Subsoil		2nd order - geometrical nonlin 📝	
	Nonlinearity		Beam local nonlinearity	
	Stability		Support nonlinearity/Soil spring	
	Climatic loads		Friction support/Soil spring	
	Prestressing		Sequential analysis	

2) Global imperfection

See previous chapter.


3) Steel setup

The whole structure can be considered as non-sway, which means that $I \le L$ (or conservatively I = L). SCIA Engineer will execute the flexural buckling check with k = 1.

•	Steel setup	×
⊡- Standaard EN ⊡- Steel Member check Fire resistance	Name Steel Member check	Standaard EN
	Shear Torsion Default sway types	EN 1993-1-1: 6.2.6 EN 1993-1-1: 6.2.7 EN 1993-1-1: 6.3.1
Relative deformation	y-y z-z Buckling length ratios ky, kz	
	Max. k ratio [-] Max. slenderness [-]	10,00 200,00
	2 nd order buckling ratios □ Lateral Torsional Buckling	I = L T EN 1993-1-1: 6.3.2

Unity check for ULS

 \rightarrow Combined compression and bending check is decisive

Path 2c 2nd order analysis – Global imperfection (initial inclination) + local imperfection (curvature)

1) Functionalities

		Project data		×
Basic data Fu	nctionality Actions Protection			
Scia	Dynamics		Nonlinearity	^
Engineer	Initial stress		Initial deformations and curvat 🗹	
	Subsoil		2nd order - geometrical nonlin 📝	
	Nonlinearity		Beam local nonlinearity	
	Stability		Support nonlinearity/Soil spring	
	Climatic loads		Friction support/Soil spring	
	Prestressing		Sequential analysis	

2) Global imperfection

See previous chapters.

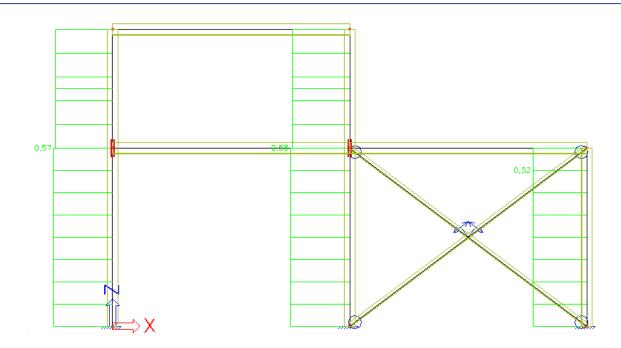
3) Bow imperfection

B	uckling and relative length	s.		×
Base settings Buckling data				
	Name BC1 Buckling systems relation	Number of parts	2	
	ZZ = ZZ	ky factor	Calculate	•
	yz = zz 💌	kz factor	Calculate	•
Dz = Dy	it = zz 💌	Sway yy	acc. to Steel>Beams>Setup	-
$L_{y} = \frac{D_{z}}{D_{z}} = \frac{D_{z}}{L_{z}}$		Sway zz	acc. to Steel>Beams>Setup	-
Lyz		Point of load application	In shear center	-
			Calculated	
		- Bow imperfection eo dy EN 199	3-1-1 Table 5.1 - elastic	_
*		eo dz EN 199	3-1-1 Table 5.1 - elastic	
	─ Relative deformation systems relation	tion		
	def z = yy	def y =	ZZ 💌	
	Warping check			
☐ X diagonals		dard method		_
	Jacan	dard method		
			OK Cancel	Apply

The bow imperfection e0 is inserted in the Buckling parameters:

And in the nonlinear combination, a reference is made to this inserted buckling data:

	Nonlinear co	mbinations	×
🏓 🤮 🗶 🖄 🔽	. ⊇ ⊜ Al	• 🕅	
NL BG1	Name	NL BG1	
NL BG2	Description		
	Туре	Ultimate	Ψ.
	201()	1,00	
	Bow imperfection	According to buckling data	Ψ.
	Global imperfection	Inclination functions	Ψ.
	dx inclination functions		
	Z	IDef X	*
	Factor	None	Ψ.
	Sense	+	Ψ.
New from linear combinatio	ns New Insert Edit Delete		Close


4) Steel setup

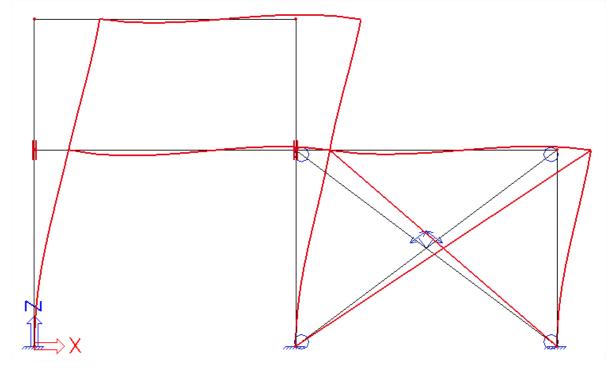
According to the Eurocode, it is not necessary anymore to execute the flexural buckling check. SCIA Engineer will execute the flexural buckling check with k = 0,001, so that it will not be decisive.

•	Steel setup	×
 Standaard EN Steel Member check Fire resistance Cold Formed Plated structural elements Limit slenderness Buckling defaults Relative deformation 	Name Steel Member check Shear Torsion Default sway types Buckling length ratios ky, kz Lateral Torsional Buckling General settings Elastic verification Verify only section checks Flexural buckling accounted for by 2 nd order calculation	Standaard EN EN 1993-1-1 EN 1993-1-1: 6.2.6 EN 1993-1-1: 6.2.7 EN 1993-1-1: 6.3.1 EN 1993-1-1: 6.3.1 EN 1993-1-1: 6.3.2 no no yes

Unity check for ULS

 \rightarrow Combined compression and bending check is decisive

Path 3 2nd order analysis – Buckling form replacing both global + local imperfection


1) Functionalities

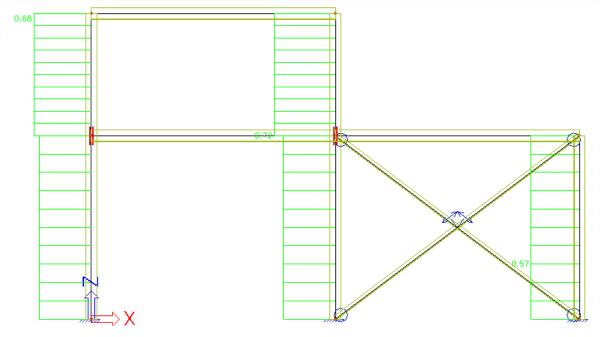
		Project data		
Basic data Fu	nctionality Actions Protection			
Scia	Dynamics		Nonlinearity	^
Engineer	Initial stress		Initial deformations and curvat 📝	
	Subsoil		2nd order - geometrical nonlin 📝	
	Nonlinearity		Beam local nonlinearity	
	Stability		Support nonlinearity/Soil spring	
	Climatic loads		Friction support/Soil spring	
	Prestressing		Sequential analysis	

2) Stability calculation

See previous chapters.

The first buckling mode looks like this:

Calculation of $\eta_{init} \rightarrow$ To be filled in as 'max. deformation' (see 'Nonlinear combinations' window)


🔊 😳 🥒 🛤	💽 🗠 😂 🗛	- 7	
	Name	NL BG1	
NL BG2	Description		
	Туре	Ultimate	
	Contents of combination		
	BG1 [-]	1,00	
	Bow imperfection	None	
	Global imperfection	Buckling shape	
	Stability	S1	
	Eigen shape	1	
	Max deformation [mm]	188,0	

3) Steel setup

According to the Eurocode, it is not necessary anymore to execute the flexural buckling check. SCIA Engineer will execute the flexural buckling check with k = 0,001, so that it will not be decisive.

	Steel setup	×
 Standaard EN Steel Member check Fire resistance Cold Formed Plated structural elements Limit slenderness Buckling defaults Relative deformation 	Name Steel Member check Shear Torsion Default sway types Buckling length ratios ky, kz Lateral Torsional Buckling General settings Elastic verification Verify only section checks Flexural buckling accounted for by 2 nd order calculation Moments on columns in simple construction	Standaard EN EN 1993-1-1 EN 1993-1-1: 6.2.6 EN 1993-1-1: 6.2.7 EN 1993-1-1: 6.3.1 EN 1993-1-1: 6.3.1 EN 1993-1-1: 6.3.2 no v yes no

Unity check for ULS \rightarrow Combined compression and bending check is decisive

SLS Check

Nodal displacement

The nodal displacement defines the maximum global deflections in the vertical and horizontal directions.

The following values are controlled in the example below:

- \circ Limit for horizontal deflections δ is h/150
- \circ Limit for vertical deflection δ_{max} is L/200

Example: Industrial Hall.esa

Look at "Results -> Displacement of nodes" and look at the combination CO2 - SLS.

Horizontal deformation

The maximum displacement in the X direction is 25.3mm on a height of 6.9m. And in the Y-direction 27.4mm on a height of 8.1m.

Limit for Limit for horizontal deflection δ is h/150

⇔	6900/150 = 46 mm	\rightarrow 25.3mm < 46 mm	ightarrow OK
⇒	8100/150 = 54 mm	\rightarrow 27.4mm < 54mm	\rightarrow OK

Vertical deformation

The maximum displacement in the Z direction is 57.8 mm

Limit for Limit for vertical deflection δ is L/200

 \Rightarrow 30000/200 = 150 mm \rightarrow 57.8 mm < 150 mm \rightarrow OK

Displacement of nodes

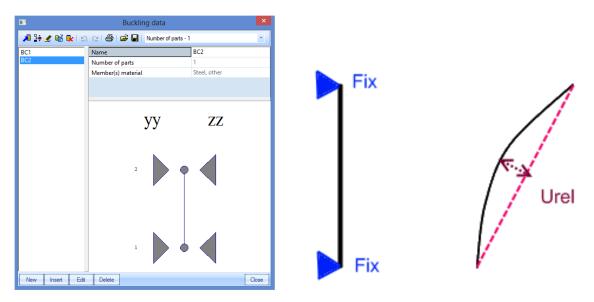
Linear calculation, Extreme : Global Selection : All Combinations : CO2

Node	Case	Ux [mm]	Uy [mm]	Uz [mm]	Fix [mrad]	Fiy [mrad]	Fiz [mrad]
N113	CO2/1	-25,3	-0,5	-0,2	-1,3	0,4	0,0
N114	CO2/2	25,3	-0,5	-0,2	-1,3	-0,4	0,0
N70	CO2/3	0,0	-27,4	0,0	1,5	0,0	1,2
N60	CO2/4	0,0	27,4	0,0	-1,5	0,0	1,2
N109	CO2/5	12,7	0,1	-57,8	-0,1	-0,2	0,0
N82	CO2/6	9,8	-8,6	13,8	-24,8	-0,2	1,7
N80	CO2/6	9,5	-9,6	0,0	-27,6	0,0	1,2
N179	CO2/7	-9,5	9,6	0,0	27,6	0,0	1,2
N116	CO2/8	-9,2	-0,1	-21,3	-0,4	-5,8	0,0
N112	CO2/5	9,2	-0,1	-21,3	-0,4	5,8	0,0
N95	CO2/7	-9,6	-9,0	0,0	-26,0	0,0	-4,0
N87	CO2/6	9,6	-9,0	0,0	-26,0	0,0	4,0

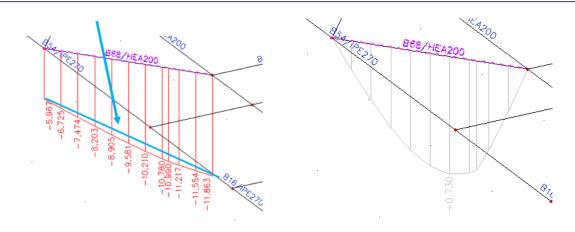
Relative deformation

For each beam type, limiting values for the relative deflections are set, using the menu "Steel -> Beams -> Setup -> Relative deformations":

	Steel setup	
⊡. Standard EN	Name	Standard EN
Standard Erv	 Steel Member check Fire resistance Cold Formed Plated structural elements Limit slenderness Buckling defaults 	EN 1993-1-1 EN 1993-1-2 EN 1993-1-3 EN 1993-1-5 EN 50341-1
	 Relative deformation General [-] Beam [-] 	200,00
	Column [-] Gable column [-]	200,00 200,00
	Secondary column [-] Rafter [-]	200,00 200,00
	Purlin [-] Roof bracing [-] Wall bracing [-]	200,00 200,00 200,00
	Girt [-] Truss chord [-]	200,00 200,00
	Truss diagonal [-] Plate rib [-]	200,00 200,00


With the option "Steel -> Beams -> SLS Checks - Relative deformation", the relative deformations can be checked. The relative deformations are given as absolute value, relative value related to the span, or as unity check related to the limit for the relative value to the span.

The span is defined in the menu "Buckling and relative lengths".


Two options for this span are possible and explained below:

2 nodes supported

When two nodes are supported in this menu as shown below, the deformation is taken as the maximum deflection of the beam in comparison with a line connecting the two end nodes:

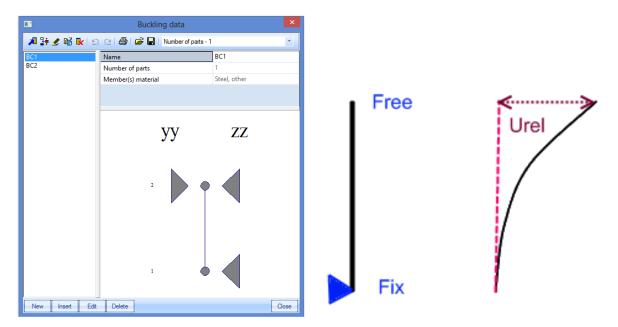
In below an example on this principle:

Calculation for this relative deformation:

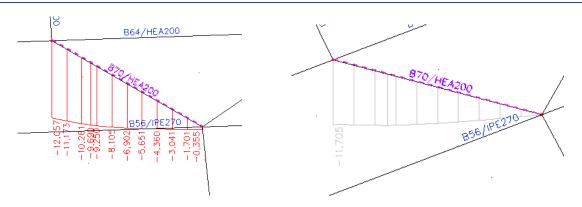
Deformation in the beginning of the beam = 5,967mm and at the end = 11,863mm.

Maximum deformation is at 0,979m from the beginning at the beam. So this point has already displaced 9,5mm (see blue line at the picture):

 $uz_{blue\ line;0,979m} = 5,967mm + \frac{0,979m}{1,632m} * (11,863mm - 5,967mm) = 9,504mm$


And $u_{z, relative} = 10,2mm - 9,5mm = 0,7mm$

And suppose the length of this beam = 1632mm:


$$\Rightarrow \quad rel \, uz = \frac{0.73mm}{1632mm} = 1/2236$$

1 node supported and the other free

This is the case if one end node is free:

In below an example on this principle:

No the maximal relative deformation is taken as the deformation minus the deformation of the fixed node.

And $u_{z, relative} = 12,057mm - 0,355mm = 11,7mm$

And suppose the length of this beam = 1632mm:

$$\Rightarrow rel uz = \frac{11,7mm}{1632mm} = 1/139$$

Now this principle is shown at the example of the industrial hall.

Example: Industrial hall

Consider beam B10.

Relative deformation

Linear calculation, Extreme : Global, System : Principal Selection : B10 Combinations : CO2

Member	dx [m]	Case - combination	uy [mm]	Rel uy [1/xx]	uz [mm]	Rel uz [1/xx]	Check uy [-]	Check uz [-]
B10	15,075	CO2/4	-0,2	1/3103	-28,0	1/539	0,06	0,37
B10	15,075	CO2/9	0,2	1/3170	9,5	1/1589	0,06	0,13
B10	14,325	CO2/8	0,0	0	-57,8	1/261	0,00	0,77
B10	12,029	CO2/6	0,0	1/10000	13,2	1/1142	0,00	0,18

Around the y-y axis (in the z-direction), only the first node has been supported:

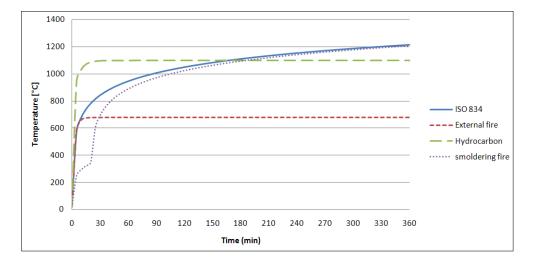
yy zz	Length = 15,075 m
6	Deformation $uz = 57.8$ mm (and 0 mm at the beginning of the beam)
5 • 🗸	uz _{relative} = 57.8 mm – 0.0 mm = 57.8 mm
4	uz _{relative} / Length = 57.8 mm / 15075 mm = 1/261
3	Check = $\frac{1/261}{1/200} = 0,77$
	1/200

Fire resistance Check - Not in concept edition

For the fire resistance calculation a Professional or an Expert edition is necessary. The fire resistance check has been inputted in module esasd.05.xx (esasd.05.01 for the EC-EN).

General

The fire resistance check in SCIA Engineer has been inputted following the EN 1993-1-2 – simple calculation model.


For a selected temperature curve, the temperature in the material after a required period is calculated. And with this material temperature, the material characteristics are adapted.

The required levels of fire safety depend on factors such as:

- type of occupancy
- height and size of the building
- effectiveness of fire brigade action
- active measures such as vents and sprinklers

Temperature time curves

The user can choose between 4 nominal temperature-time curves in SCIA Engineer:

Standard temperature-time curve: $\Theta_g = 20 + 345 \log_{10}(8 t + 1)$ [°C] $\alpha_c = 25 \text{ W/m}^2 \text{K}$

> External fire curve: $\Theta_g = 660 (1 - 0.687 e^{-0.32 t} - 0.313 e^{-3.8 t}) + 20$ [°C] $\alpha_c = 25 \text{ W/m}^2 \text{K}$

Hydrocarbon curve : $\Theta_g = 1080 \ (1 - 0.325 \ e^{-0.167 \ t} - 0.675 \ e^{-2.5 \ t}) + 20$ [°C] $\alpha_c = 50 \ W/m^2 K$

Smoldering fire: $\Theta_g = 154\sqrt[4]{t} + 20$ [°C] During 20 minutes followed by the standard ISO 834 curve This can be set in "Steel -> Beams -> Steel setup":

	Steel setup	×
⊡ · Standard EN	Name	Standard EN
Member check Relative deformation Fire resistance	Member check Fire resistance	EN 1993-1-1 EN 1993-1-2
Buckling defaults Limit slenderness Cold Formed	Requirement Required fire resistance R [min]	EN 1993-1-2: 2.5 30,00
Plated structural elements	 Net heat flux Emissivity related to the fire compartment ε_f [-] 	EN 1993-1-2: 3.1 1,00
	Emissivity related to the surface material ε_m [-] Configuration factor ϕ for radiative heat flux [-]	0,70 1,00
	Temperature-time curve Temperature-time curve	EN 1993-1-2: 3.2 ISO 834 curve
	Coefficient of heat transfer by convection a₀ [-] □ Structural fire design	ISO 834 curve External fire curve Hydrocarbon curve
	Analysis type Use adaptation factor for shadow effect k _{sh}	Smoldering fire User-defined curve
	Cold Formed	EN 1993-1-3

This is the temperature of the air during the time.

Steel temperature

Afterwards the steel temperature will be calculated after a certain time with the following formulas. This steel temperature will be assumed as a uniform temperature in the whole section:

Unprotected steel member:

$$\Delta \theta_{a,t} = k_{sh} \frac{A_m/V}{c_a \rho_a} \dot{h}_{net} \Delta t$$

Protected steel member:

$$\Delta \theta_{a,t} = \frac{\lambda_p A_p / V}{d_p c_a \rho_a} \cdot \frac{\theta_{g,t} - \theta_{a,t}}{(1 + \phi/3)} \Delta t - \left(e^{\frac{\phi}{10}} - 1 \right) \Delta \theta_{g,t}$$

Where:

k _{sh}	Correction factor for shadow effect
	For I-sections under nominal fire actions: $k_{sh} = 0.9 [A_m/V]_b / [A_m/V]$
	All other cases: $k_{sh} = [A_m/V]_b/[A_m/V]$
A_m/V	Section factor for unprotected steel members [1/m] In table 4.2 (EN 1993-1-2) some section factors are calculated for unprotected steel members.
$[A_m/V]_b$	the box value for the section factor
\dot{h}_{net}	the design value on the net heat flux per unit area [W/m ²] This value should be obtained from EN 1991-1-2 with ϵ_f = 1,0 and ϵ_m = 0,7.
ϕ	$=\frac{c_p\rho_p}{c_a\rho_a}\mathbf{d}_p\cdot A_p/V$
A_p/V	section factor – see also table 4.3. En 1993-1-2

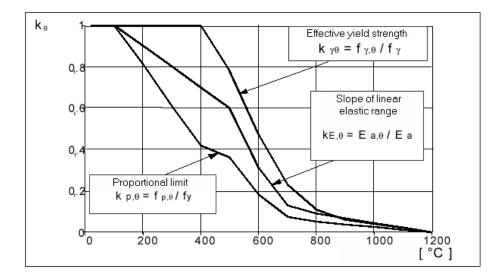
And the netto heat flux can be calculated according EN 1991-1-2 article 3.1:

 $\dot{h}_{net} = \dot{h}_{net,r} + \dot{h}_{net,c}$ h_{net.c} = heat transfer by convection $= \alpha_c (\Theta_a - \Theta_m)$ [W/m²] = heat transfer by radiation h_{net.r} $= \Phi \cdot \varepsilon_m \cdot \varepsilon_f \cdot \sigma \cdot \left[(\Theta_r + 273)^4 - (\Theta_m + 273)^4 \right]$ [W/m²] With Coefficient of heat transfer by convection [W/m²K] α_{c} The gas temperature in the vicinity of the fire exposed member [°C] Θ_{q} This temperature may be adopted as nominal temperature-time curves as given below Θ_m The surface temperature of the member [°C] Stephan Boltzmann constant (= $5,67 \cdot 10^{-8}$ W/m²K⁴) σ Surface emissivity of fire = 0,7 (EN 1993-1-2) ϵ_{m} Emissivity of fire = 1 ε_f Φ Configuration factor - Φ = 1,0. A lower value may be chosen to take account of so called position and shadow effects (calculation is given in EN 1991-1-2 -Annex G).

 Θ_r Is the effective radiation temperature of the fire environment [°C]

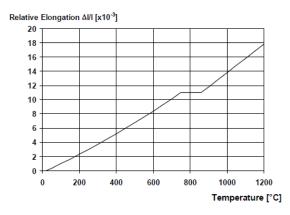
In case of fully fire engulfed members, the radiation temperature Θ_r may be represented by the gas temperature Θ_g around that member.

All the parameters of the previous formulas can be adapted in the Steel setup:


3	Steel setup	
⊡- Standard EN	Name	Standard EN
···· Member check ···· Relative deformation	Member check	EN 1993-1-1
– Fire resistance – Buckling defaults – Limit slenderness – Cold Formed – Plated structural elements	Fire resistance Requirement	EN 1993-1-2 EN 1993-1-2: 2.5
	Required fire resistance R [min]	30,00 EN 1993-1-2: 3.1
	Emissivity related to the fire compartment ϵ_f [-] Emissivity related to the surface material ϵ_m [-]	1,00 0,70
	Configuration factor φ for radiative heat flux [-]	1,00
	Temperature-time curve Temperature-time curve	EN 1993-1-2: 3.2 ISO 834 curve
	Coefficient of heat transfer by convection α _o [-] Structural fire design	25,00 EN 1993-1-2: 4.2
	Analysis type	Resistance domain
	Use adaptation factor for shadow effect k _{sh}	no

Steel properties

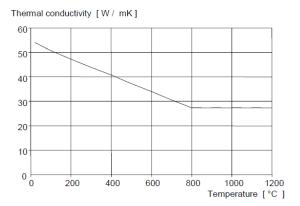
Most of the steel properties will change by a different temperature, so once the steel temperature is known, the steel properties can be calculated. In below the properties for carbon steel from EN 1993-1-2, art.3 are used. The properties for stainless steel can be found in EN 1993-1-2: 2005: Annex C.


Reduction factors

Effective yield strength, relative to yield strength at 20°C:	$k_{y,\theta} = f_{y,\theta} / f_y$
Proportional limit, relative to yield strength at 20°C:	$k_{P,\theta} = f_{P,\theta}/f_y$
Slope of linear elastic range, relative to slope at 20°C:	$k_{E,\theta} = E_{a,\theta}/E_a$

Thermal elongation

The relative thermal elongation of steel $\Delta l/l$ should be determined from the following:


For 20°*C* $\leq \theta_a < 750^{\circ}C$: $\frac{\Delta l}{l} = 1,2 \times 10^{-5}\theta_a + 0,4 \times 10^{-8}\theta_a^2 - 2,416 \times 10^{-4}$ For 750°*C* $\leq \theta_a < 860^{\circ}C$: $\frac{\Delta l}{l} = 1,1 \times 10^{-2}$ For 860°*C* $\leq \theta_a < 1200^{\circ}C$: $\frac{\Delta l}{l} = 2 \times 10^{-5} \theta_a - 6,2 \times 10^{-3}$

Specific heat

$$\begin{split} & \text{For } 20^{\circ}C \leq \theta_{a} < 600^{\circ}C \text{: } c_{a} = 425 + 7,73 \, x \, 10^{-1} \, \theta_{a} - \\ & 1,69 \, x \, 10^{-3} \theta_{a}^{2} + 2,22 \, x \, 10^{-6} \theta_{a}^{3} \, J/kgK \end{split} \\ & \text{For } 600^{\circ}C \leq \theta_{a} < 735^{\circ}C \text{: } c_{a} = 666 + \frac{13002}{738 - \theta_{a}} \, J/kgK \\ & \text{For } 735^{\circ}C \leq \theta_{a} < 900^{\circ}C \text{: } c_{a} = 545 + \frac{17820}{\theta_{a} - 731} \, J/kgK \\ & \text{For } 900^{\circ}C \leq \theta_{a} < 1200^{\circ}C \text{: } c_{a} = 650 \, J/kgK \end{split}$$

Thermal conductivity

For $20^{\circ}C \le \theta_a < 800^{\circ}C$: $\lambda_a = 54 - 3,33 \ x \ 10^{-2} \ \theta_a \ W/mK$

For $800^{\circ}C \le \theta_a < 1200^{\circ}C$: $\lambda_a = 27.3 W/mK$

Fire resistance properties in SCIA Engineer

In SCIA Engineer the user can input fire resistance properties on a steel member by "Steel -> Beams - > Member Check data -> Fire resistance":

	FireResistance		×
	General settings		
///////////////////////////////////////	lgnore check	🗖 no	
	Requirement		
_→ ←	Required fire resistance	Input	*
	Required fire resistance R [min]	30,00	
+	Temperature-time curve		
1	Temperature-time curve	According to setup	•
	Coefficient of heat transfer by convection α_o	25,00	
1	Compression members		
• • • • • • • • • • • • • • • • • • •	Modify buckling lengths during fire	🔲 no	
	Beams		
	Fire exposure	3 sides	-
	Covered flange	Top flange	•
T	Adaptation factor for cross-section K1	0,85	
	Adaptation factor for beam	Statically indeterminate beam	•
	Adaptation factor for beam κ_2	0,85	
	Steel temperature development		
	Protection	🔽 yes	
	Insulation	Fibre board	×
	Thickness [mm]	10,00	
		ОК	Cancel

Where:

Required fire resistance:	Inputted by the user or according to the steel setup			
Required fire resistance R: Specifies the req		equired resistance (input).		
Temperature-time curve: According to the		e steel setup, or overruled for the selected member.		
Coefficient of heat transfer by convection αc :		Can only be changed by a user defined temperature time curve.		
Modified buckling lengths during fire:		The buckling ratios can be inputted manually for the fire resistance check.		
Fire exposure:	The section ma	y be exposed to fire on all or only three sides.		
Covered flange:	When a section flange can be c	is exposed to fire on only three sides, the covered nosen here.		

Adaption factor for cross-sectio	This parameters is the adaptation factor for non-uniform temperature distribution across a cross-section. This factor κ_1 is used for the check on the design moment resistance $M_{fi,\theta,Rd}$.
Adaption factor for beam:	At the supports of a statically indeterminate beam or all other cases.
Adaption factor for beam κ2:	This parameters is the adaptation factor for non-uniform temperature distribution along the beam. This factor κ_2 is used for the check on the design moment resistance $M_{fi,\theta,Rd}$.
Protection:	Yes or no.

Insulation: Here the insulation properties can be inputted.

•	×			
🥕 🤮 🍠 📸 🔛 🗠 😂	🎒 🚅 🚅 🔚 Al	• 7		
Fibre board				
Name	Fibre board			
Encasement type	Hollow encasement			
Insulation type	Board protection	111111111111		
Unit mass [kg/m^3]	150,0			
Thermal conductivity [W/mK]	2,0000e-01			
Specific heat [J/gK]	1,2000e+00			
Default value for thickness [mm]	10,00			
New Insert Edit Delete OK				

Thickness [mm]:

Thickness of the insulation.

Resistance domain

In SCIA Engineer 3 calculation methods are implemented:

- Resistance domain
- Time domain.
- Temperature domain (iterative).

The choice between those analysis types can be made in "Steel -> Beams -> Steel setup":

	Steel setup	
∃- Standard EN	Name	Standard EN
⊡ Steel Member check	Steel	
 Relative deformation Fire resistance 	Member check Fire resistance	EN 1993-1-1 EN 1993-1-2
Buckling defaults Limit slenderness	Requirement	EN 1993-1-2: 2.5
Cold Formed	Required fire resistance R [min]	30,00
Plated structural elements	Net heat flux	EN 1993-1-2: 3.1
	Emissivity related to the fire compartmen	tε _f [-] 1,00
	Emissivity related to the surface material ϵ_m [-] Configuration factor ϕ for radiative heat flux [-]	ε _m [-] 0,70
		flux [-] 1,00
	Temperature-time curve	EN 1993-1-2: 3.2
	Temperature-time curve	ISO 834 curve
	Coefficient of heat transfer by convection	α _c [-] 25,00
	Structural fire design	EN 1993-1-2: 4.2
	Analysis type	Resistance domain
	Use adaptation factor for shadow effect k	
	Cold Formed	Time domain Temperature domain (Iterative)
	Plated structural elements	Let 1995 1 9

In this chapter the fire resistance check following the Resistance domain will be explained.

Principle

The user will choose the used temperature time curve and will input a required fire resistance time. After this time the temperature of the gas and afterwards of the steel will be calculated.

With this steel temperature the reduced properties will be calculated and a fire resistance check according to EN 1993-1-2, art. 4 will be executed with those adapted steel properties. This check will result in a unity check, which is the fire resistance check for the resistance domain.

Example in SCIA Engineer

This principle is explained with an example in SCIA Engineer.

Example: Industrial hall.esa


Consider member B28:

Following fire resistance properties are inputted on this column:

Properties	Ф ×
Member (1)	🖂 Va 💔 🖉
<u>▶</u> # B	ه چ
General settings	
lgnore check	no
Requirement	
Required fire resistance	Input 👻
Required fire resistance R [min]	30,00
Temperature-time curve	
Temperature-time curve	According to setup
Coefficient of heat transfer by cor	25,00
Compression members	
Modify buckling lengths during	🔲 no
Beams	
Fire exposure	All sides 👻
Adaptation factor for cross-sectio	1,00
Adaptation factor for beam	Statically indeterminate beam
Adaptation factor for beam κ_2	0,85
Steel temperature develop	
Protection	V yes
Insulation	Fibre board 🔹
Thickness [mm]	5,00
Member	B28

So the fire resistance will be checked after 30 minutes (= 1800 seconds) with a fibre board protection and the buckling factors are taken equal as the buckling factors of the normal steel code check.

The fire resistance check is executed via "Steel -> Beams -> ULS check -> Check - fire resistance" for this column and for combination "CO3 - Fire", resulting in a unity check of 0,95:

When looking at the detailed output, this calculation is given by SCIA Engineer:

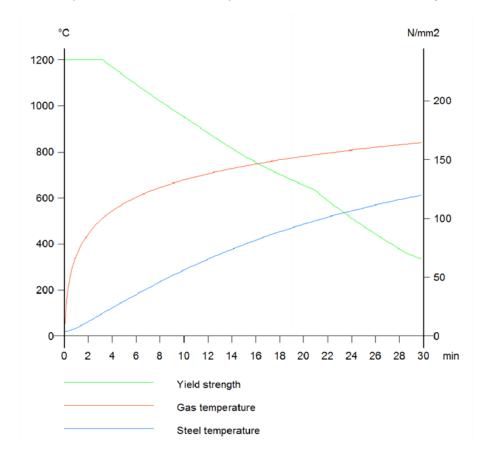
First the partial safety factors are given:

Partial safety factors	
Gamma M0 for resistance of cross-sections	1,00
Gamma M1 for resistance to instability	1,00
Gamma M2 for resistance of net sections	1,25
Gamma M, fi for resistance to fire	1,00

Afterwards the material properties (not adapted by the temperature) are given:

Material		
Yield strength fy	235,0	MPa
Ultimate strength fu	360,0	MPa
Fabrication	Rolled	

And the fire resistance properties as inputted in SCIA Engineer. Here is also indicated that the fire resistance check has been executed after 30 minutes of fire.


Fire resistance

Verification in Resistance domain according to EN 1993-1-2 article 4.2.3

Fire resistance		
Temperature-time curve	ISO 834 curve	
Coefficient of heat transfer by convection alpha,c	25,00	W/m ² K
Emissivity related to fire compartment epsilon, f	1,00	
Emissivity related to surface material epsilon,m	0,70	
Configuration factor for radiation heat flux phi	1,00	
Required fire resistance R	30,00	min
Gas temperature theta,g	841,80	°C
Material temperature theta,a,t	614,72	°C
Beam exposure	All sides	
Adaptation factor for cross-section kappa,1	1,00	
Adaptation factor for beam kappa,2	0,85	
Reduction factor for the 0.2% proof strength k,0.2p,theta	0,27	
Reduction factor for the E modulus k,E,theta	0,28	

Insulation properties		
Name	Fibre board	
Encasement type	Hollow encasement	
Insulation type	Board	
Thickness d,p	5,00	mm
Unit mass rho,p	150,0	kg/m³
Thermal conductivity lambda,p	2,0000e-01	W/mK
Specific heat c,p	1,2000e+00	J/gK
Section factor for insulated steel members Ap/V	1,1611e-01	1/mm

And now a graph is shown with the gas temperature (in this example follow the ISO 834 curve), the steel temperature calculated with a protection and the reduction of the yield strength.

And after all the unity check is shown with the reduced properties:

...::SECTION CHECK:....

Classification for cross-section design According to EN 1993-1-2 article 4.2.2 Classification of Internal Compression parts According to EN 1993-1-1 Table 5.2 Sheet 1

Maximum width-to-thickness	ratio	59,57
Class 1 Limit		58,91
Class 2 Limit		67,83
Class 3 Limit		93,50

=> Internal Compression parts Class 2 Classification of Outstand Flanges According to EN 1993-1-1 Table 5.2 Sheet 2

Maximum width-to-thickness ratio	6,40
Class 1 Limit	7,65
Class 2 Limit	8,50
Class 3 Limit	11,71

=> Outstand Flanges Class 1

=> Section classified as Class 2 for cross-section design

The critical check is on position 6.900 m

Internal forces	Calculated	Unit
N,fi,Ed	-61,02	kN
Vy,fi,Ed	-0,01	kN
Vz,fi,Ed	-34,87	kN
T,fi,Ed	0,00	kNm
My,fi,Ed	-240,62	kNm
Mz,fi,Ed	-0,05	kNm

Compression check

According to EN 1993-1-2 article 4.2.3.2 and formula (4.5)

Α	1,7500e+04	mm ²
N,fi,t,Rd	1130,81	kN
Unity check	0,05	-

Bending moment check for My

According to EN 1993-1-2 article 4.2.3.3 and formula (4.10)

Wpl,y	4,8650e+06	mm ³
Mpl,y,Rd	1143,28	kNm
My,fi,theta,Rd	314,37	kNm
My,fi,t,Rd	369,84	kNm
Unity check	0,65	-

Bending moment check for Mz

According to EN 1993-1-2 article 4.2.3.3 and formula (4.10)

Wpl,z	6,1410e+05	mm ³
Mpl,z,Rd	144,31	kNm
Mz,fi,theta,Rd	39,68	kNm
Mz,fi,t,Rd	46,68	kNm
Unity check	0,00	-

Shear check for Vy

According to EN 1993-1-2 article 4.2.3.3 and formula (4.16)

Ι.			
	Eta	1,20	
	Av	9,2698e+03	mm ²
	Vpl,y,Rd	1257,69	kN
	Vy,fi,t,Rd	345,83	kN
	Unity check	0,00	-

Shear check for Vz

According to EN 1993-1-2 article 4.2.3.3 and formula (4.16)

Eta	1,20	
Av	9,9222e+03	mm ²
Vpl,z,Rd	1346,22	kN
Vz,fi,t,Rd	370,17	kN
Unity check	0,09	-

Combined bending, axial force and shear force check

According to EN 1993-1-2 article 4.2.3 According to EN 1993-1-1 article 6.2.9.1 and formula (6.41)

My,fi,t,Rd	369,84	kNm
Alpha	2,00	
Mz,fi,t,Rd	46,68	kNm
Beta	1,00	

Unity check (4.9) = 0,42 + 0,00 = 0,42 -

Note: Since the shear forces are less than half the plastic shear resistances their effect on the moment resistances is neglected.

Note: Since the axial force satisfies both criteria (6.33) and (6.34) of EN 1993-1-1 article 6.2.9.1(4) its effect on the moment resistance about the y-y axis is neglected.

Note: Since the axial force satisfies criteria (6.35) of EN 1993-1-1 article 6.2.9.1(4) its effect on the moment resistance about the z-z axis is neglected.

The member satisfies the section check.

...::STABILITY CHECK::...

Classification for member buckling design Decisive position for stability classification: 0,000 m **Classification of Internal Compression parts** According to EN 1993-1-1 Table 5.2 Sheet 1

Maximum width-to-thickness rat	io 59,57
Class 1 Limit	28,05
Class 2 Limit	32,30
Class 3 Limit	35,70

=> Internal Compression parts Class 4 Classification of Outstand Flanges According to EN 1993-1-1 Table 5.2 Sheet 2

Maximum width-to-thickness	ratio	6,40
Class 1 Limit		7,65
Class 2 Limit		8,50
Class 3 Limit		11,90

=> Outstand Flanges Class 1

=> Section classified as Class 4 for member buckling design

Properties						
sectional area A eff	1.5269e+04	mm ²				
Shear area Vy eff	8.9420e+03	mm ²	Vz eff	6.3269e+03	mm ²	
radius of gyration iy eff	320.39	mm	iz eff	58.15	mm	
moment of inertia Iy eff	1.5674e+09	mm ⁴	Iz eff	5.1634e+07	mm ⁴	
elastic section modulus Wy eff	4.1630e+06	mm ³	Wz eff	3.9265e+05	mm ³	
Eccentricity eny	0.00	mm	enz	0.00	mm	

Flexural Buckling check

According to EN 1993-1-2 article 4.2.3.2 & Annex E and formula (4.5)

Buckling parameters	уу	zz	
Sway type	sway	non-sway	
System length L	6,900	6,900	m
Buckling factor k	3,25	0,99	
Buckling length Lcr	22,415	6,832	m
Critical Euler load Ncr	6596,08	2293,84	kN
Slenderness Lambda	74,15	125,75	
Relative slenderness Lambda, rel	0,74	1,25	
Relative slenderness	0,73	1,23	
Lambda,rel,theta			
Imperfection Alpha	0,65	0,65	
Reduction factor Chi, fi	0,59	0,36	
Buckling resistance Nb,fi,t,Rd	584,85	356,17	kN

Flexural Buckling verification			
Cross-section effective area Aeff	1,5269e+04	mm ²	
Buckling resistance Nb, fi, t, Rd	356,17	kN	
Unity check	0,17	-	

Torsional(-Flexural) Buckling check

According to EN 1993-1-2 article 4.2.3.2 & Annex E and formula (4.5) **Note:** For this I-section the Torsional(-Flexural) buckling resistance is higher than the resistance for Flexural buckling. Therefore Torsional(-Flexural) buckling is not printed on the output.

Lateral Torsional Buckling check

According to EN 1993-1-2 article 4.2.3.4 & Annex E and formula (4.19)

LTB parameters				
Cross-section effective modulus V	Veff,y	4,163	0e+06	mm ³
Elastic critical moment Mcr		1709,	.12	kNm
Relative slenderness Lambda, rel, L	T	0,76		
Relative slenderness Lambda, rel, L		0,75		-
Imperfection Alpha,LT		0,65		+
Reduction factor Chi,LT,fi		0,58		+
Design buckling resistance Mb,fi,t	.Rd	156,7	7	kNm
Unity check	,	1,53		-
Mcr parameters				
Mcr parameters				
LTB length L	6,900		m	
Influence of load position	no influ	ence		
Correction factor k	1,00			
Correction factor kw	1,00			
LTB moment factor C1	1,77			
LTB moment factor C2	0,00			
LTB moment factor C3	1,00			
Shear center distance d,z	0,00		mm	
Distance of load application z,g	0,00		mm	
Mono-symmetry constant beta,y	0,00		mm	
Mono-symmetry constant z,j	0,00		mm	

Note: C parameters are determined according to ECCS 119 2006 / Galea 2002.

Bending and axial compression check

According to EN 1993-1-2 article 4.2.3.5 & Annex E and formula (4.21c),(4.21d)

Bending and axial compression ch	eck paramete	rs
Cross-section effective area Aeff	1,5269e+04	mm ²
Cross-section effective modulus Weff,y	4,1630e+06	mm ³
Cross-section effective modulus Weff,z	3,9265e+05	mm ³
Design compression force N,fi,Ed	61,02	kN
Design bending moment My,fi,Ed	-240,62	kNm
Design bending moment Mz,fi,Ed	-0,05	kNm
Reduction factor Chi, min, fi	0,36	
Reduction factor Chi,z,fi	0,36	
Reduction factor Chi,LT,fi	0,58	
Equivalent moment factor beta, M, y	1,80	
Factor mu,y	0,07	
Interaction factor k,y	0,99	
Equivalent moment factor beta,M,z	1,80	
Factor mu,z	-0,05	
Interaction factor k,z	1,01	
Equivalent moment factor beta,M,LT	1,80	
Factor mu,LT	0,18	
Interaction factor k,LT	0,97	

Unity check (4.21c) = 0,17 + 0,89 + 0,00 = 1,06 -Unity check (4.21d) = 0,17 + 1,49 + 0,00 = 1,66 -

Shear Buckling check

According to EN 1993-1-2 article 4.2.3 According to EN 1993-1-5 article 5 & 7.1 and formula (5.10) & (7.1)

Shear Buckling parameters		
Buckling field length a	6,900	m
Web	unstiffened	
End post	non-rigid	
Web height hw	719,00	mm
Web thickness t	11,50	mm
Yield strength fyw	235,0	MPa
Flange width bf	263,00	mm
Flange thickness tf	17,00	mm
Yield strength fyf	235,0	MPa
Material coefficient epsilon	0,85	
Shear correction factor Eta	1,20	

Shear Buckling verification				
Web slenderness hw/t	62,52			
Web slenderness limit	51,00			
Plate slenderness lambda,w,theta	0,71			
Reduction factor chi,w,fi	1,16			
Contribution of the web Vbw, fi, t, Rd	359,26	kN		
Capacity of the flange Mf, fi, t, Rd	190,18	kNm		
Flange factor c	0,000	m		
Contribution of the flange Vbf, fi, t, Rd	0,00	kN		
Maximum resistance Vb,fi,t,Rd,limit	370,17	kN		
Resistance Vb,fi,t,Rd	359,26	kN		
Plastic resistance Mpl,fi,t,Rd	314,37	kNm		
Shear ratio eta,3,bar	0,10			

Unity check (5.10) = 0,10 -

Note: The interaction between Bending and Shear Buckling does not need to be verified because the shear ratio does not exceed 0.5.

The member does NOT satisfy the stability check!

So in this example the Compression and bending check will result in a unity check op 1,66.

Time domain

In SCIA Engineer 3 calculation methods are implemented:

- Resistance domain
- Time domain.
- Temperature domain (iterative).

The choice between those analysis types can be made in "Steel -> Beams -> Steel setup": In this chapter the fire resistance check following the Time domain will be explained.

Principle

The user will choose the used temperature time curve and will input a required fire resistance time. After this time the temperature of the gas and afterwards of the steel will be calculated.

Now also the critical steel temperature will be calculated. And the Fire resistance check according to the time domain will be the ratio of the real steel temperature after a chosen time and the critical steel temperature.

This critical steel temperature $\theta_{a,cr}$ will be calculated with a simple formula:

$$\theta_{a,cr} = 39,19 \ln\left[\frac{1}{0,9674\,\mu_0^{3,833}} - 1\right] + 482$$

Where μ_0 is the degree of utilization. This means the unity check following EN 1993-1-2 at time = 0sec, so without augmentation of the temperature.

NOTE

This simple formula is only valid if no stability phenomena or deformation criteria have to be taken into account.

Example in SCIA Engineer

This principle is explained with an example in SCIA Engineer.

Example: Industrial hall.esa

Consider member B28:

And change in "Steel -> Beams -> Steel setup" the analysis type to "Time domain".

The fire resistance check is executed via "Steel -> Beams -> ULS check -> Check - fire resistance" for this column and for combination "CO3 - Fire", resulting in a unity check of 1,03:

When looking at the detailed output, this calculation is given by SCIA Engineer:

The check results shown hereafter are given at time t = 0,00 min. These results have been used to determine the degree of utilization for the critical temperature.

So the check following EN 1993-1-2 will be given at t = 0min, so 20°C, without any reduction of the steel properties. This check will result in a low unity check, which is the degree of utilisation μ_0 :

In this example again the Compression and bending check will result in the highest unity check = 0.47 = μ_0 .

Bending and axial compression check	
According to EN 1993-1-2 article 4.2.3.5 & Annex E	E and formula (4.21c),(4.21d)

Bending and axial compression che	eck parameter	r s
Cross-section effective area Aeff	1,5269e+04	mm ²
Cross-section effective modulus Weff,y	4,1630e+06	mm ³
Cross-section effective modulus Weff,z	3,9265e+05	mm ³
Design compression force N,fi,Ed	61,02	kN
Design bending moment My,fi,Ed	-240,62	kNm
Design bending moment Mz,fi,Ed	-0,05	kNm
Reduction factor Chi, min, fi	0,35	
Reduction factor Chi,z,fi	0,35	
Reduction factor Chi,LT,fi	0,58	
Equivalent moment factor beta,M,y	1,80	
Factor mu,y	0,05	
Interaction factor k,y	1,00	
Equivalent moment factor beta,M,z	1,80	
Factor mu,z	-0,06	
Interaction factor k,z	1,00	
Equivalent moment factor beta,M,LT	1,80	
Factor mu,LT	0,19	
Interaction factor k,LT	0,99	

Unity check (4.21c) = 0,05 + 0,25 + 0,00 = 0,29 - Unity check (4.21d) = 0,05 + 0,42 + 0,00 = 0,47 -

This value is used in the simple formula for the critical steel temperature:

$$\begin{aligned} \theta_{a,cr} &= 39,19 \ln \left[\frac{1}{0,9674 \, \mu_0^{3,833}} - 1 \right] + 482 \\ \theta_{a,cr} &= 39,19 \ln \left[\frac{1}{0,9674 \, (0.47)^{3.833}} - 1 \right] + 482 = 594 \,^{\circ}C \end{aligned}$$

And the steel temperature after 30 minutes is 614.72°C.

The unity check is: $\frac{614.72^{\circ}C}{594.26^{\circ}C} = 1.03$

All those values are also given in the overview table in the preview of the fire resistance check:

Fire resistance		
Temperature-time curve	ISO 834 curve	
Coefficient of heat transfer by convection	25,00	W/m ² K
alpha,c		
Emissivity related to fire compartment epsilon, f	1,00	
Emissivity related to surface material epsilon,m	0,70	
Configuration factor for radiation heat flux phi	1,00	
Required fire resistance R	30,00	min
Gas temperature theta,g	841,80	°C
Material temperature theta,a,t	614,72	°C
Degree of utilization mu,0	0,47	
Critical material temperature theta,a,cr	594,26	°C
Fire resistance t,cr	28,10	min
Beam exposure	All sides	
Adaptation factor for cross-section kappa,1	1,00	
Adaptation factor for beam kappa,2	0,85	
Reduction factor for the 0.2% proof strength	1,00	
k,0.2p,theta		
Reduction factor for the E modulus k,E,theta	1,00	
Unity check	1,03	-

And also the **Fire resistance time** is given in this table: **This member van resist fire for 28,10 minutes**.

NOTE

As stated before, this simple calculation method can only be used if no stability phenomena have to be taken into account. In this example the stability causes the highest unity check and is thus taken into account, so **this method is not correct and should not be used**!

Temperature domain (iterative)

In SCIA Engineer 3 calculation methods are implemented:

- Resistance domain
- Time domain.
- Temperature domain (iterative).

The choice between those analysis types can be made in "Steel -> Beams -> Steel setup": In this chapter the fire resistance check following the Temperature domain will be explained.

If this method is used, the critical steel temperature will be calculated with an iterative process. So first an estimation of this critical temperature will be chosen and the unity check following EN 1993-1-2 will be executed, if this check is lower than one, a higher critical temperature is chosen or when this check is higher than one, a lower temperature is chosen. Now this unity check is recalculated just until the moment this unity check gives a result for this critical steel temperature between 0,99 and 1.

This is a more accurate procedure to calculate the critical temperature and this method is also valid if stability phenomena or deformation criteria have to be taken into account.

Example in SCIA Engineer

This principle is explained with an example in SCIA Engineer.

Example: Industrial hall.esa

Consider member B28:

And change in "Steel -> Beams -> Steel setup" the analysis type to "Temperature domain (iterative)".

The fire resistance check is executed via "Steel -> Beams -> ULS check -> Check - fire resistance" for this column and for combination "CO3 - Fire", resulting in a unity check of 1,15:

When looking at the detailed output, this calculation is given by SCIA Engineer:

The check results shown hereafter are given at the critical material temperature theta, a, cr = 535, 10 °C. These results have been used to determine the critical temperature i.e. the temperature at which the unity checks become near to 1,00.

So the check following EN 1993-1-2 will be given at $\theta_{a,cr} = 535,10^{\circ}$ C. This temperature is calculated iterative resulting in a unity check following the EN 1993-1-2 equal to 1:

Bending and axial compression check

According to EN 1993-1-2 article 4.2.3.5 & Annex E and formula (4.21c),(4.21d)

Cross-section effective area Aeff	ck parameter 1,5269e+04	mm ²
	,	_
Cross-section effective modulus Weff,y	4,1630e+06	mm ³
Cross-section effective modulus Weff,z	3,9265e+05	mm ³
Design compression force N, fi, Ed	61,02	kN
Design bending moment My,fi,Ed	-240,62	kNm
Design bending moment Mz,fi,Ed	-0,05	kNm
Reduction factor Chi, min, fi	0,38	
Reduction factor Chi,z,fi	0,38	
Reduction factor Chi,LT,fi	0,60	
Equivalent moment factor beta,M,y	1,80	
Factor mu,y	0,10	
Interaction factor k,y	0,99	
Equivalent moment factor beta,M,z	1,80	
Factor mu,z	-0,01	
Interaction factor k,z	1,00	
Equivalent moment factor beta,M,LT	1,80	
Factor mu,LT	0,17	
Interaction factor k,LT	0,98	

Unity check (4.21c) = 0,10 + 0,54 + 0,00 = 0,64 - Unity check (4.21d) = 0,10 + 0,90 + 0,00 = 1,00 - 0.00

And indeed the highest unity check will be equal to 1.00 for this critical temperature.

So for this case the unity check is: $\frac{614.72^{\circ}C}{535.10^{\circ}C} = 1.15$

All those values are also given in the overview table in the preview of the fire resistance check:

Fire resistance

Verification in Temperature domain according to EN 1993-1-2 article 4.2.4

Fire resistance		
Temperature-time curve	ISO 834 curve	
Coefficient of heat transfer by convection	25,00	W/m ² K
alpha,c		
Emissivity related to fire compartment epsilon, f	1,00	
Emissivity related to surface material epsilon,m	0,70	
Configuration factor for radiation heat flux phi	1,00	
Required fire resistance R	30,00	min
Gas temperature theta,g	841,80	°C
Material temperature theta,a,t	614,72	°C
Critical material temperature theta,a,cr	535,10	°C
Fire resistance t, cr	23,30	min
Beam exposure	All sides	
Adaptation factor for cross-section kappa,1	1,00	
Adaptation factor for beam kappa,2	0,85	
Reduction factor for the 0.2% proof strength	0,45	
k,0.2p,theta		
Reduction factor for the E modulus k,E,theta	0,50	
Unity check	1,15	-

And also the **Fire resistance time** is given in this table: **This member van resist fire for 23,30 minutes**.

NOTE

As stated before, this simple calculation method can only be used if no stability phenomena have to be taken into account. In this example the critical steel temperature was calculated using the iterative process, so **this method is correct and can be used as an alternative for the resistance domain.**

References and literature

[1]	Eurocode 3 Design of steel structures Part 1 - 1 : General rules and rules for buildings ENV 1993-1-1:1992, 1992
[2]	Essentials of Eurocode 3 Design Manual for Steel Structures in Building ECCS - N° 65, 1991
[3]	R. Maquoi ELEMENTS DE CONSTRUCTIONS METALLIQUE Ulg , Faculté des Sciences Appliquées, 1988
[4]	ENV 1993-1-3:1996 Eurocode 3 : Design of steel structures Part 1-3 : General rules Supplementary rules for cold formed thin gauge members and sheeting CEN 1996
[5]	Eurocode 3 Design of steel structures Part 1 - 1/ A1 : General rules and rules for buildings ENV 1993-1-1:1992/A1, 1994
[6]	Eurocode 3 Design of steel structures Part 1 - 2 : General rules - Structural fire design ENV 1993-1-2:2005, 2005
[7]	Model Code on Fire Engineering ECCS - N° 111 May 2001
[8]	Eurocode 1 Basis of design and actions on structures Part 2-2 : Actions on structures - Actions on structures exposed to fire ENV 1991-2-2:1995
[9]	DIN 18800 Teil 1 Stahlbauten Bemessung und Konstruktion DK 693.814.014.2, November 1990
[10]	DIN 18800 Teil 2 Stahlbauten Stabilitätsfälle, Knicken von Stäben und Stabwerken DK 693.814.074.5, November 1990
[11]	DIN 18800 Teil 3 Stahlbauten Stabilitätsfälle, Plattenbeulen DK 693.814.073.1, November 1990
[12]	G. Hünersen, E. Fritzsche Stahlbau in Beispielen

Berechnungspraxis nach DIN 18 800 Teil 1 bis Teil 3 (11.90) Werner-Verlag, Düsseldorf 1991 [13] E. Kahlmeyer Stahlbau nach DIN 18 800 (11.90) Werner-Verlag, Düsseldorf [14] **Beuth-Kommentare** Stahlbauten Erläuterungen zu DIN 18 800 Teil 1 bis Teil 4, 1.Auflage Beuth Verlag, Berlin-Köln 1993 [15] Stahlbau Kalender 1999 DSTV Ernst & Sohn, 1999 [16] Roik, Carl, Lindner Biegetorsionsprobleme gerader dünnwandiger Stäbe Verlag von Wilhelm Ernst & Sohn 1972 [17] DASt-Richtlinie 016 Bemessung und konstruktive Gestaltung von Tragwerken aus dünnwandigen kaltgeformted Bauteilen Stahlbau-Verlagsgesellschaft - 1992 [18] H. Rubin, Interaktionsbeziehungen für doppeltsymmetrische I- und Kasten-Querschnitte bei zweiachsiger Biegung und Normalkraft Der Stahlbau 5/1978, 6/1978 [19] Stahl im Hochbau 14. Auflage, Band I / Teil 2 1986, Verlag Stahleisen mbH, Düsseldorf Staalconstructies TGB 1990 [20] Basiseisen en basisrekenregels voor overwegend statisch belaste constructies NEN 6770, december 1991 Staalconstructies TGB 1990 [21] Stabiliteit NEN 6771, december 1991 [22] Staalconstructies TGB 1990 Stabiliteit NEN 6771, januari 2000 [23] NEN 6072 Rekenkundige bepaling van de brandwerendheid van bouwdelen Staalconstructies December 1991 [24] NEN 6072/A2 - Wijzigingsblad

- Rekenkundige bepaling van de brandwerendheid van bouwdelen Staalconstructies December 2001
- [25] NEN 6702 Belastingen en vervormingen TGB 1990 December 1991
- [26] Handleiding moduul STACO VGI

	Staalbouwkundig Genootschap Staalcentrum Nederland 5684/82
[27]	Newmark N.M. A simple approximate formula for effective end-fixity of columns J.Aero.Sc. Vol.16 Feb.1949 pp.116
[28]	Stabiliteit voor de staalconstructeur uitgave Staalbouwkundig Genootschap
[29]	Rapportnr. BI-87-20/63.4.3360 Controleregels voor lijnvormige constructie-elementen IBBC Maart 1987
[30]	Y. Galéa Flambement des poteaux à inertie variable Construction Métallique 1-1981
[31]	I. Vayas, Interaktion der plastischen Grenzschnittgrössen doppelsymmetrischer I-Querschnitte Stahlbau 69 (2000), Heft 9
[32]	SCIA Engineer Steel Code Check Theoretical Background 04/2011
[33]	Eurocode 3 Design of steel structures Part 1 - 1 : General rules and rules for buildings EN 1993-1-1:2005
[34]	Rules for Member Stability in EN 1993-1-1 Background documentation and design guidelines ECCS - N° 119 2006
[35]	Lateral-Torsional buckling of steel beams: A general expression for the moment gradient factor. A. López, D. J. Yong, M. A. Serna Stability and Ductility of Steel Structures, 2006.